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Overview
We propose a novel method for aligning a single image to a digital terrain model with the use 
of semantic segments. (a) Synthetic semantic segments and edges are rendered using terrain 
model and geospatial database. (b) Query image is segmented via semantic segmentation 
method. (c) Semantic segments from query image are aligned with synthetic semantic seg-
ments and camera orientation (α, β, γ) is recovered.
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We �ne-tuned and trained three semantic segmentation methods on a GeoPose3K [1] dataset. We show 
that training on synthetic data is important step to obtain reasonable segmentations for our application. 
Furthermore, to detect edges, we use edge detector trained on rendered silhouettes. 

Spherical cross-correlation
We propose to use spherical cross-correlation as the similarity measure to match semantic segments. We 
exploit the cross-correlation theorem for e�cient computation in the Fourier domain. 
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To match con�dences of multiple semantic segment classes, we propose Con�dence Fusion (CF) framework, 
which is a weighted geometrical average of subsequent con�dences. This allows easy integration with di�erent 
modalities, e.g., existing edge-matching [2] can be added as one con�dence layer into our framework.

Experiments
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CF-high, AUC: 0.70

CF-low, AUC: 0.66

VCC-2011-high, AUC: 0.52

VCC-2011-low, AUC: 0.41

Random, AUC: 0.29

Segments vs. edges [2]
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Deeplab-seg-crf, AUC: 0.71

Deeplab-seg, AUC: 0.70

ALE-seg, AUC: 0.70

FCN8s-sf-seg, AUC: 0.70

Random, AUC: 0.29

Orientation estimation w.r.t.
semantic segmentation

0 20 40 60 80 100 120 140 160 180

orientation error [◦]

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n

o
f

im
a
g
e
s

CF, AUC: 0.70

CF-b10, AUC: 0.70

CF-b15, AUC: 0.69

CF-b20, AUC: 0.68
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Importance of 
segment boundaries
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Are edges and semantic 
areas complementary?
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CF-VCC-2011, AUC: 0.78

HLoc-synthetic, AUC: 0.77

HLoc-Deeplab, AUC: 0.49

Random, AUC: 0.29

CF vs. HLoc [3] on GeoPose3K
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HLoc-CH1, AUC: 0.77

HLoc-Deeplab, AUC: 0.40

Random, AUC: 0.29

CF vs. HLoc on CH1 [3]

- Semantic segments are complementary to edges.
- Boundaries of semantic segments are less informative than their areas. 
- Combination of matching with edges and semantic segments exhibit better performance.

Cross-correlation as a measure of confidence
To estimate positive and accurate matching con�dence, we propose to separate the cross-correlation into a 
positive and negative part. When the positive and negative cross-correlations are combined, the maximum 
value is correctly in place where both the pattern and its surroundings overlap the largest areas.

orig. pattern pk orig. signal fk cross-corr.

neg. pattern pk neg. signal fk neg. cross-corr.

combined Ck

Two-step vs. single-step cross-correlation 
Our two-step cross-correlation of positive functions cannot be simply reduced to a single cross-correlation of 
real-valued functions, as it provides di�erent results. 

a) two-step (ours)
b) single-step
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