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A B S T R A C T

We propose two novel temporally stable screen-space labeling methods for dynamic
scenes. The first one is suitable for offline processing of the entire interaction or the
video in advance. The second method is designed for interactive applications. The
main idea of our proposed methods is to minimize the vertical and horizontal move-
ment of the labels during the interaction with the scene (e.g., zooming or translating the
camera). According to the results of quantitative evaluation, our labeling is more stable
during the interaction than labeling produced by the current state of the art. Moreover,
participants of a comprehensive user study declared that the labeling produced by the
proposed methods allows them to follow moving labels significantly more accurately,
and it is significantly more pleasing than with previously published methods. Further-
more, the proposed methods can be extended by the prominence of the features and
easily parameterized to fit different requirements to the label layout.

c© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Short textual annotations (so-called labels), more or less dis-
tant from the features of interest, are used to communicate the
position of features within an object together with additional
information (e.g., the name of the feature). The right visual
correspondence of the label with the annotated feature is cru-
cial for functional and aesthetic label placement. All the labels
of a single visualization form a labeling or labeling layout. In
high-quality label layout, the labels should be unambiguous and
well-readable, labels should not overlap with each other, one
should be able to conclusively assign each annotated feature to
a corresponding label and vice versa. The labeling should also
be aesthetic, even though aesthetic aspects are often subjective.

Labeling has several variants according to the type of the fea-
ture (point, area, line) and positioning of corresponding labels
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in the label layout. Labels can be placed within the space of
visualization tightly next to the features, so-called internal la-
beling. If the feature density is too high or if the background
must not be cluttered, the labels can be placed outside the visu-
alization, so-called external labeling. In order to visualize the
mapping of labels with corresponding features, each label is
connected with its feature using a line, also known as leader.

The term external labeling is accepted in current literat-
ure as an umbrella that covers several labeling techniques,
such as excentric or focus-region labeling [1], contour la-
beling [2], boundary labeling [3] and its variant for panorama
images [4, 5]. A comprehensive state-of-the-art survey by the
founder of boundary labeling Bekos et al. [6] provides a first
unified taxonomy for categorizing external labeling techniques.
A survey by Oeltze-Jafra and Preim [7] provides an additional
overview of labeling techniques in the medical domain.

Interactive applications of labeling algorithms introduce a
new aspect of temporal coherence. Applying only static al-
gorithms on a frame-by-frame basis leads to temporally un-
stable behavior. In such a case, labels often jump abruptly from
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Figure 1. Labeling created by our method on a photo aligned with a terrain
model using camera pose estimation techniques of Baboud et al. [8].

one position to another, breaking several assumptions of high-
quality labeling.

In this paper, we specifically focus on the one-sided boundary
labeling of dynamic scenes, where labels are placed on the top
of the scene (the static case was introduced by Gemsa et al. [4]
as panorama labeling). The features in the scene are approx-
imated by points denoted as anchors. The visual relationship
between labels and corresponding features is established by ver-
tical leaders that connect the label with the anchors, see Fig. 1.

We propose two labeling methods suitable for a diverse range
of applications. The first is designated for the offline processing
of the entire interaction in advance. Such a method can be
valuable for creating, e.g., educational visualizations, television
news infographics, or generally in the movie industry, where the
complete interaction with the scene (i.e., all the frames of the
video-sequence) is known in advance. Imagine video-footage
from a drone flying through mountain terrain or a city, where
one would like to label peaks or tourist attractions, respectively.
The second method is designed for the online processing of
continuously delivered frames created on-demand as a result
of interacting with a dynamic scene. Such a method can be ap-
plied in, e.g., games, 3D map viewers, and augmented or virtual
reality applications. Imagine an interactive application present-
ing a 3D map (digital elevation model), where one would like to
know nearby points of interest and could move along the scene
by interacting with the camera (e.g., pan or rotate). For an over-
view of the proposed methods, see Fig. 3.

This work significantly expands on our previous paper [5]
initially presented at Computer Graphics International 2019
and presents the following contributions: (1) A temporally
stable labeling method designed for the offline processing of the
entire interaction with the scene in advance. (2) A novel tem-
porally stable labeling method designed for interactive visualiz-
ations. (3) An extended labeling terminology of Bekos et al. [6]
suitable for interactive and non-interactive labeling of dynamic
scenes. (4) A formulation of visibility optimization based on
feature prominence, and an extension for smooth label trans-
itions. (5) A comparison of the proposed methods with three
others, and the results of an extensive user study on several as-
pects of labeling.

2. Related Work

In this section, we divide the boundary labeling methods into
two groups based on the flexibility of the labels. We also discuss
methods that provide the temporally coherent movement of the
labels.

Fixed model. The input is a set of anchors and a set of labels
placed on top of the scene. The task is to connect each label
with the corresponding anchor with a leader. Bekos et al. [3] in-
troduced a method for boundary labeling where a set of anchor
points is connected with a set of predefined labels positioned
in one or up to three rows with rectilinear leaders. The method
finds the leaders whose combined length is minimal. Benkert et
al. [9] later showed that better label layouts could be produced
if we consider criteria such as the number of bends of the lead-
ers and distance between the leaders, in addition to the length
of the leaders.

Flexible model. The input is a set of anchors placed on top of
the scene and a set of labels without positions. The task is
to determine the positions of the labels and create a connec-
tion with the corresponding anchor. Maass and Döllner [10]
presented two methods that produce boundary label layouts.
Labels are processed according to the camera-feature distance
and centered on the vertical leader. Gemsa et al. [4] presen-
ted a dynamic programming approach that, for a set of anchor
points, places the labels on the lowest possible number of rows
using dynamic programming. Each label is connected with a
corresponding anchor point with a vertical leader, and no leader
intersects with any label.

Temporal coherence. The methods addressing the temporally
coherent movement of labels strive to determine a label layout,
where the labels do not change the position abruptly and in a
predictable manner.

Ali et al. [2] proposed an anchor point stabilization based on
an additional attractive force that aims to keep anchor points
close to their previous positions. Čmolı́k and Bittner [11], and
later Balata et al. [12] proposed a similar technique based on
additional coherence terms for features and label positions.

Preim et al. [13] proposed a method for temporally coher-
ent boundary labeling, but they allow the leaders to intersect,
which makes determining the correspondence between anchors
and labels hard, especially for layouts with many anchors and
labels.

Mühler and Preim [14] proposed a method for the labeling of
2D slices and 3D reconstructions of segmented medical struc-
tures for surgical planning. They propose to lock the once-
calculated position of a label over multiple slices until the la-
beling is infeasible (e.g., overlap of several labels). A similar
approach was published by Mogalle et al. [15], who presented
a more constrained label placement technique for the labeling
of 2D slice data.

Götzelmann et al. [16] presented an approach focusing on
the labeling of animated 3D objects such as combustion en-
gines with moving pistons. The entire animation is analyzed
to determine the calm and fluctuating regions. Afterward, the
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labels are placed in calm regions such that they move as little
as possible during the animation. The label placement of fluc-
tuating parts is resolved by the visualization of the trajectory
whose midpoint is connected to the corresponding label. Unfor-
tunately, the approach considers the exact position and shape of
illustrated objects and does not rely on any shape simplification
with bounding objects.

Stein and Décoret [17] presented a greedy approach for the
dynamic labeling of interactive scenes. To address the problem
of temporal discontinuity, they incorporated the interpolation of
the label position. Therefore, the velocity of the moving label is
bounded, and it may take several frames to reach the computed
position. However, this approach does not solve the problem;
instead, the movement of the labels is smoothed to avoid visual
discontinuity.

Tanzgern et al. [18] proposed an 3D object space labeling ap-
proach (so-called hedgehog labeling). In contrast to most pre-
viously published approaches, they define labels as elements of
the 3D scene, which overcome the lack of temporal coherence.
Therefore, the leader is part of the line defined by the center of
the sphere enclosing the illustrated object and the feature of the
corresponding label in 3D space. They suggest two methods to
prevent label occlusions: center-based where labels move along
a 3D pole sticking out from the annotated object, and plane-base
where the labels are placed within a corresponding plane using
a force-based approach proposed by Ali et al. [2].

Maass and Döllner [10] proposed a similar hysteresis ap-
proach to make the movement of labels temporally stable. Dur-
ing the interaction, the labels keep their current positions, and
once the user pauses or finishes the interaction, the label layout
is recalculated, and the labels perform a continuous movement
to the computed position.

Unfortunately, none of the approaches are suitable for the
temporally stable one-sided boundary labeling, where a small
movement of a label can decrease the available space for an-
other label, which in turn can lead to an abrupt change in the
position of the label. Consequently, the change in position can
again limit available space for another label.

3. The Definition of Dynamic Labeling

In this section, we describe the formal definition of boundary
labeling for dynamic scenes. We extended the terminology and
definitions proposed by Bekos et al. [6], that are suitable for
static labeling, to capture specific aspects of dynamic labeling.
As input we are given a sequence S of frames F0, F1, . . . , Fn=|S |.
A frame is a tuple F = (D,A,L) described by a drawing re-
gion D partitioned into the image region I and labeling region
L = D \ I; see Fig. 2. The drawing region D has the same di-
mensions (Dw,Dh) for the entire sequence S . A set of anchors
A denotes the points of interest to be labeled. Each anchor a is
a point of the image region I with coordinates (ax, ay). Further-
more, each anchor has additional information attached (e.g., the
name of the anchor). The axis-aligned bounding box of addi-
tional information is denoted as label ` of dimensions (`w, `h).
Each label is a rectangular sub-region of L placed at coordinates
(`x, `y); see Fig. 2. We denote a set of all instances (e.g., labels,

L

I

label �

πport

anchor
(ax, ay)

position
(�x, �y)

leader λ
γcallout

offset �o

Figure 2. Illustration of terminology based on the report of Bekos et al. [6].

anchors) in frame F with a superscript such as LF (labels) and
a set of all instance that occur at least once in any frame of se-
quence S such as LS . Each anchor is connected to its label ` by
a leader λ at an attachment point called port π on the boundary
of `. The distance between `x and π is called offset `o (i.e., ho-
rizontal coordinate `x = ax − `o). A callout is the collection
γ = (λ, π, `) of a leader λ connected to a label ` at the point π.
A set C of callouts is called labeling or label layout. A labeling
of frame F and sequence S is denoted as CF and CS, respect-
ively. We call a labeling C of a sequence S valid if it satisfies
the following requirements.

(R1) The labels do not overlap with each other [2, 10, 14, 19,
20].

(R2) The labels are connected with the corresponding anchors
with vertical leaders [4, 10, 14, 19].

The labeling quality among a set S of all valid labelings can be
described by a cost function c : S → R+. The optimal labeling
C0 ∈ S satisfies the condition of optimality c(C0) < c(C)∀C ∈ S
and respects all the following criteria C.

(C1) The number of stacked layers of labels in the label layout is
minimized [2]. To put it differently, the labels are placed as
close as possible to the corresponding anchor [10, 14, 19].

(C2) The leader is connected to the label as close to the center
of the label as possible to provide clear mapping [10], and
to achieve aesthetic and symmetric layout [4, 19].

(C3) The movement of the labels through the interaction is tem-
porally coherent [2, 14]. In other words, the vertical and
horizontal movement of the labels should be continuous
without abrupt changes [20], and minimized through the
interaction with the scene [19].

(C4) [Optional] The vertical positions of labels should corres-
pond to the distances of labeled anchors in a scene from
the camera center. The labels of the closest anchor should
be the lowest in the label layout [10].

Please note, that high-quality human-friendly labeling, in gen-
eral, is hard to formalize as it is relative to various subjective
and domain aspects. Therefore, high-quality boundary labeling
is often a compromise among the described criteria. Because of
the previous statement, we provide a quantitative evaluation in
Sec. 9 and an extensive user study in Sec. 10–11.
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Figure 3. High-level overview of processing stages applied in the proposed methods. The OfflineTemporal method consists of the preprocessing stage
followed by the Label Interval to Row Assignment and Within Row Label Placement stage. The OnlineTemporal is designed as a single-stage method.

4. Offline Labeling Method

When the entire interaction with the scene is known in ad-
vance, we process the sequence S as a whole. We place labels
into discrete rows such that the vertical position `y is approxim-
ated by row r ∈ R, where R = { r | r ∈ N ∧ r ≤ |AS | } is a set
of available rows. Furthermore, we suppose the width `w and
the height `h is fixed for all F ∈ S . The proposed temporally
coherent method denoted as OfflineTemporal consists of the
following three stages (for a high-level overview, see Fig. 3).

Preprocessing. Given a set of anchors AS , we create an an-
chor interval α = [αmin, αmax] for each anchor a ∈ AS . The
anchor interval α captures the horizontal movement of anchor
a through all the frames F ∈ S . The minimum x-coordinate
αmin = min(ax) and the maximum αmax = max(ax) of an anchor
define the bounds of the corresponding anchor interval α (see
Fig. 4). We denote the set of anchor intervals derived from the
sequence S by AS .

Given a set LS of labels, we then define a label interval
λ = [λmin, λmax] for each label ` ∈ LS . We construct the label
interval λ to reserve space for the horizontal movement of the
label. This way, we can fixate the vertical movement of a label
and allow movement only in the horizontal direction. There-
fore, one label cannot influence the movement of any other la-
bel, which fulfills criterion C3. We derive the width of a label
interval λ from the associated anchor interval a and the label

` as λw = max(αmax − αmin, `w). We denote the set of label
intervals derived from the sequence S by ΛS .

Furthermore, we calculate an average camera-to-anchor dis-
tance αd for each anchor a ∈ AS to be able to satisfy criterion
C4. Because the label interval λ is associated with the anchor
interval α, the camera-to-anchor distance λd = αd.

Label Interval to Row Assignment. In this stage, we determine
the vertical position `y = r and the left bound λmin of the label
interval λ. The right bound of the label interval λ can then be
derived as λmax = λmin + λw. Since the label moves inside the
reserved space given by its label interval λ, the label intervals
must not overlap with each other (requirement R1). Similarly,
for the same reason, the anchor interval αmust be a sub-interval
of label interval λ; otherwise, the requirement R2 could be viol-
ated (label ` could not be connected with its anchor a). Further-
more, as we determine the row r in which the label will be fixed
throughout the sequence S, we also take the criteria C1 and C4
into account in this stage.

Please note that this stage is solved only once for the given
sequence S . For an example of a label-to-row assignment, see
Fig. 4.

Within Row Label Placement. In this stage, we derive the ho-
rizontal position `x of label ` fixed within row r by optimizing
the offset `o from the port π for each frame F ∈ S . Therefore,
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we take into account the criterion C2. However, in order to bet-
ter fulfill criterion C2 at the bounds of λ, we enable the label
to pop out of its associated label interval λ. Consequently, we
consider also requirements R1 and R2.

4.1. Label Interval to Row Assignment
We formulate the problem as mixed-integer linear program-

ming (MILP), which combines combinatorial optimization over
binary variables with linear optimization over continuous vari-
ables [21].

The instance of MILP is formulated as the minimization of
the cost function c1 with respect to decision variable Ir

λ ∈ {0, 1}
that indicates whether the label interval λ is placed in row r,
and with respect to continuous variable λmin considered further
in the definition of constraints. The cost function is defined as

c1

(
ΛS

)
=

∑
λ∈ΛS

∑
r∈R

Ir
λr̂ + Ir

λδ(λd̂, r̂). (1)

The hat modifier in the above-given variable (e.g., r̂) denotes
the unity-based normalized value of that variable. The product
in the first term of c1 supports the criterion C1. The function
δ(d̂, r̂) in the second term of c1 is defined as

δ
(
d̂, r̂

)
=

∣∣∣r̂ − w1d̂
∣∣∣ +

∣∣∣w2r̂ − d̂
∣∣∣ + w3

∣∣∣r̂ − d̂
∣∣∣(

d̂ + w2

)2 (2)

and supports the criterion C4. The purpose of the δ function is
to establish a relation between normalized distance d̂ and the
row r of the label interval λ. By observing the influence of
various values of the weights w1, w2 and w3 on the resulting
layouts, we recommend using the weights w1 = 0.1, w2 = 0.8,
and w3 = 0.5, see Fig. 5. Please note that we have selected
these values with the criterion C4 in mind.

To fulfill the requirements R1 and R2, we define the follow-
ing constraints. First, we define the constraint to satisfy require-
ment R1 as

λ(i)
min + λ(i)

w ≤ λ
( j)
min + M ·

(
1 − Ir

λ(i)

)
+ M ·

(
1 − Ir

λ( j)

)
, (3)

where we define the order so that the associated anchor interval
α(i)

min ≤ α
( j)
min ∧ α

(i) , α( j) and α(i), α( j) ∈ AS . This constraint
only needs to be applied in the case that both label intervals
are in the same row r which is indicated by the binary decision
variables Ir

λ(i) and Ir
λ( j) . The use of a binary variable to activate

and deactivate the constraint is a known trick in MILP [22, 4].
The constant M needs to be sufficiently large to deactivate the
constraint (i.e., the constraint is always true for any combination
of λ(i) and λ( j) that are not in the same row). We set M equal to
the width of drawing region Dw.

From the definition of the label interval λ and from the re-
quirement R2 it follows that the interval must completely over-
lap its associated anchor interval α. Therefore, we introduce
constraints to enforce that α is the subinterval of λ as

λmin ≤ αmin, (4a)
λmin + λw ≥ αmax. (4b)

Finally, the label interval λ is allowed to occupy only a single
row r. Therefore, we define this restriction as∑

r∈R

Ir
λ = 1. (5)

Camera Shift Direction

Rowstone Mountain
Volcano Peak

Little Wolfsbane Crest

Crossrocks

Crossrocks

Rowstone Mountain

Little Wolfsbane Crest r0

r1

F0

F|S|

Volcano Peak

Figure 4. Example of sequence preprocessing in the OfflineTemporal
method. The movement of the anchor in the x-axis starts at the position
denoted by a red circle in frame F0 and ends at the position denoted by a
red triangle in frame F|S |. The label interval λ (a green rectangle with a
black stroke) reserves the space for the horizontal movement of its label.
The length of the label interval λ is derived from the label width `w (blue
rectangle) and the length of anchor interval α (red line). The left bound
of label interval λmin and its vertical position (row r) is optimized in Label
Interval to Row Assignment stage.

Figure 5. Function δ with parameters w1 = 0.1, w2 = 0.8 and w3 = 0.5.

4.2. Within Row Label Placement

We formulate the problem as convex quadratic programming
(QP). When each label interval is assigned to a row and its left
bound λmin is set, it remains to determine the vertical position
of each label for a given frame F so that the criterion C2 is re-
flected. The instance of QP is formulated as the minimization
of the cost function c2 with respect to the continuous offset vari-
able `o. The cost function for the given frame F is defined as

c2 (F) =
∑
`∈LF

(
`o −

`w

2

)2

. (6)

The function c2 enforces criterion C2 only. To enforce require-
ment R1, we define a constraint for each pair of labels `(i) and
`( j) associated with anchors ax(`(i)) and ax(`( j)) in the given
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frame F as

ax

(
`(i)

)
− `(i)

o + `(i)
w ≤ ax

(
`( j)

)
− `

( j)
o , (7)

where we suppose an order so that ax(`(i)) < ax(`( j))∧ `(i) , `( j)

and `(i), `( j) ∈ LF . Furthermore, to satisfy requirement R2 we
define the constraints

`o ≥ 0, (8a)
`o ≤ `w. (8b)

Finally, we want to restrict a label overflow with vertical
bounds of drawing region Dw. This is accomplished by a pair
of

ax(`) − `o ≥ 0, (9a)
ax(`) − `o + `w ≤ Dw. (9b)

5. Interactive Labeling Method

The previously described method (in Sec. 4) is not suitable
when the entire interaction with the scene is not known in ad-
vance. Continuous delivery of frames makes it impossible to
retrieve the anchor and label intervals. Furthermore, the per-
formance of the method is also an aspect of concern in interact-
ive applications.

Therefore, we propose an interactive method OnlineTem-
poral that removes described pitfalls and at the same time re-
flects the requirements R1, R2 and satisfies the criteria C1–C4.
The OnlineTemporal method, in contrast to OfflineTemporal,
processes the entire interaction frame by frame and consists of
only single stage wherein the position of the label is determ-
ined at once individually for each F (see a high-level overview
in Fig. 3). We again place labels into discrete rows such that
the vertical position `y is approximated by row r ∈ R, where
R = { r | r ∈ N ∧ r ≤ |AF | }. Furthermore, we suppose that the
width `w and the height `h are consistent for each F.

Single Stage Position Assignment. Given a frame F and its im-
mediate predecessor F−1, we determine the temporally stable
position (`x, `y) for each label ` at once and without any know-
ledge of the following frames. Unlike the OfflineTemporal
method, we can not fixate the vertical movement of a label due
to its uncertain unfolding in the future. Therefore, we allow a
label to change its vertical position; nevertheless, in the defin-
ition of the cost function, we minimize this behaviour in favor
of criteria C3. Furthermore, we restrict the vertical change of
a label within two consecutive frames to be at most a single
row (i.e., row `F

r of label ` in frame F is either `F
r = `F−1

r or
`F

r = `F−1

r ± 1). This technique also narrows down the optimiz-
ation search space, which in turn speeds up the computation of
subsequent frames.

5.1. Single Stage Position Assignment
We formulate the problem as mixed-integer quadratic pro-

gramming (MIQP). The instance of MIQP is formulated as the
minimization of the cost function c3 with respect to decision
variable Ir

` ∈ {0, 1}, that indicates whether a label ` is placed
in row r, and with respect to continuous offset variable `o.
The cost function for any given frame F is defined as (for sim-
plification the superscript of a current frame is omitted)

c3

(
F−1, F

)
=

∑
`∈LF

∑
r∈R

Ir
`

(
wrowr̂ + wdistδ(`d̂, r̂)

)
(10a)

+
∑
`∈LF

∑
r∈R

Ir
`

(
wrow∆

(
r − `F−1

r

)2
)

(10b)

+wo f f set

∑
`∈LF

(
1
`w

(
`o − `

F−1

o

))2

(10c)

+wcenter

∑
`∈LF

(
1
`w

(
`o −

`w

2

))2

. (10d)

The variable `d denotes the distance of anchor ax(`) associated
with label ` from the camera center. Further definitions of the
delta function δ(d̂, r̂) and hat modifier from Sec. 4.1 hold. The
first term (10a) reflects the definition of a cost function c1 from
Sec. 4.1; therefore supports the criteria C1 and C4. The second
term (10b) minimizes the vertical positional change of a label
(criterion C3) in two consecutive frames F and F−1 . Similarly,
the third term (10c) minimizes the horizontal positional change.
The last term (10d) reflects the criterion C2. By observing
the influence of various weights on the resulting layouts with
the defined criteria (in Sec. 3) in mind, we recommend using
the weights of the terms as wrow = 0.5,wdist = 0.8,wrow∆

=

1.0,wo f f set = 0.1 and wcenter = 0.3.
To fulfill the requirement R1, we define the following con-

straint

ax

(
`(i)

)
−`(i)

o +`(i)
w ≤ ax

(
`( j)

)
−`

( j)
o + M ·

(
1 − Ir

`(i)

)
+ M ·

(
1 − Ir

`( j)

)
,

(11)
where we define the order so that ax(`(i)) ≤ ax(`( j)) ∧ `(i) , `( j)

and `(i), `( j) ∈ LF . To restrict the vertical position of any
given label ` in frame F, which is placed in row p = `F−1

r in the
preceding frame F−1, we introduce the constraint defined as

Ip−1
`

+ Ip
`

+ Ip+1
`

= 1. (12)

Furthermore, requirement R2 is defined in a similar way as in
Sec. 4.1. Finally, a label ` is allowed to occupy only a single
row r. Therefore, we define this restriction as∑

r∈R

Ir
` = 1. (13)

6. Extensions

Both proposed methods can be easily extended by additional
terms and constraints to customize the resulting layout. In this
section, we describe an extension for visibility optimization
based on prominence and alpha-blending extension for smooth
transitions of labels.
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6.1. Feature Prominence and Visibility Optimization

Typically, some features of the visualized scene are more im-
portant than the other ones. Therefore, we define a prominence
ϕ to express the importance of a label ` corresponding with an
anchor a(`). The prominence can be defined by a compound
of several (potentially weighted) attributes. For example, the
prominence of a mountain peak may be defined as a compound
of its elevation, isolation, topographical prominence, and dis-
tance from the current viewpoint. To illustrate the compound
prominence in our application, we define it as the weighted-
sum of peaks’ elevation ε, distance from the current viewpoint
d, and Google score ω derived from a number of search results

`ϕ = wε`ε + wd(1 − `d) + wω`ω. (14)

All attributes are normalized into the range [0, 1]. The weights
were experimentally chosen as wε = 1.0, wd = 0.2, and wω =

0.8.
In crowded visualizations (e.g., mountain terrain or city sky-

line) with many features to be labeled, it is sometimes useful not
to show all the possible labels to prevent cluttered and chaotic
label layout. More prominent features are more likely to be
labeled and visualized; on the other hand, less prominent fea-
tures do not need to be labeled at all.

Therefore, the definition of constraint Const. (13) from
Sec. 5, and ditto Const. (5) from Sec. 4, can be redefined as∑

r∈R

Ir
` ≤ 1, (15)

such that the label ` or the interval label λ, respectively, does not
have to be placed in any row r. Furthermore, the cost function
c3 from Sec. 5.1, and ditto c1 from Sec. 4.1, can be extended by
term e1 defined as

e1 (F) = −ρ v

∑
`∈LF

∑
r∈R

Ir
`

(
`ϕ + V(`, n)

)
, (16)

where the ρ v is a reward for keeping the label visible, `ϕ is a
compound prominence, and V is a visibility function that pre-
vents labels from rapid disappearing. The visibility function V
is piecewise-defined as

V(`, n) =

1 f − f n → v
`

< n
0 else,

(17)

where f is the index of the current frame, f n → v
`

is the index
of frame in which the last change from an invisible state n
(∀r ∈ R : Ir

` = 0) to a visible state v (∃r ∈ R : Ir
` = 1)

has occurred, and n is the number of frames for that the label
should stay visible. To illustrate e1 in our application, we set
ρ v = 0.9, n = 20.

Similarly, to prevent labels from rapid changing from n to
v we define the term e2 as

e2 (F) = −ρ n

∑
`∈LF

1 −∑
r∈R

Ir
`

 ((1 − `ϕ) + N(`, n)
)
, (18)

where the ρ n is a reward for keeping the label invisible, `ϕ
is a compound prominence, and N is an invisibility function
piecewise-defined as

N(`, n) =

1 f − f v → n
`

< n
0 else,

(19)

where f v → n
`

is the index of frame in that the last change from
v to a n has occurred. The rest mimics the definition of e1. To
illustrate e2 in our application, we set ρ n = 0.1, n = 10.

6.2. Smooth Label Transition

To prevent labels from popping in and out abruptly, we im-
plement smooth alpha-blending. An extended labeling method
is then denoted by the suffix Alpha (e.g., OnlineTemporalAl-
pha). Let κF

` ∈ [0, 1] be the alpha value of label ` in frame F.
When a label ` is added to the scene, the alpha value is set to
κF
` = κ

v
∆

, where κ v
∆

is a constant that defines the fade in speed.
In the following frames f , . . . , f v → n − 1, the κF

` is increased
by a fade in function such as

κF
` = min

(
κF−1

` + κ
v

∆
, 1

)
, (20)

where κF−1

` alpha value of label ` in the previous frame F−1. In

our application we use κ v
∆

= 0.1 (i.e., the label is fully visible
in 10 frames). Similarly, when a label ` is removed from the
scene, the κF

` is decremented by a fade out function such as

κF
` = max

(
0, κF−1

` − κ
n

∆

)
, (21)

where the κ n
∆

defines the fade out speed. In our application we

use κ v
∆

= 0.2 (i.e., the label fully disappears in five frames). For
simplicity, we use the linear fade in/out function.

Furthermore, to create a smooth transition of a label ` during
the fade-out blending in the proposed OnlineTmeporalmethod,
the position of corresponding anchor ax(`) needs to be predicted
because the disappearance of the anchor ax(`) cannot be pre-
computed in advance. Therefore, we apply linear extrapolation
to calculate the aF

x (`) from the two consecutive frames F−2 and
F−1 such as

aF
x (`) = aF−2

x (`) + 2
(
aF−1

x (`) − aF−2

x (`)
)
. (22)

7. Results

We used GUROBI 9.0 with a C++ interface as an optimiza-
tion solver for the OfflineTemporal as well as OnlineTemporal
method. The solver applies several primal heuristics and a
branch-and-cut algorithm with different types of cutting planes
(e.g., Gomory, MIR, StrongCG) to solve the MILP and MIQP
problem [23]. In case of the minimization of MIP problems, the
branch-and-cut algorithm (for more details see, e.g., Bixby et
al. [24]) keeps track of the upper bound and lower bound. The
upper bound UB (also called incumbent) is an objective value
of the best feasible solution found so far. On the other hand, the
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Figure 6. Time (left y-axis) and relative optimality gap (right y-axis) meas-
urements for the proposed methods considering the number of labels in the
scene.

lower bound LB is a minimum objective value of the LP-relaxed
solutions (i.e., integral constraints on variables are relaxed) in
the leaf nodes of the branching tree. The absolute difference
between upper and lower bound serves as a quality measure of
the solution to optimality. The optimization is terminated when
the relative optimality gap G defined as

G =
UB − LB

UB
· 100 (23)

is less than the GT % (the value of GT = 0.01 % is, in fact,
the recommended termination criterion by the authors of GUR-
OBI), meaning that the solver found a near-optimal solution that
can not be further than the GT % from the true-optima.

Note that, since the MILP, as well as MIQP, is NP-hard, only
exponential-time algorithms are known, and the computational
time can grow significantly with an increasing number of binary
variables (i.e., with the number of labels) [25, 26]. The follow-
ing measurements were performed on IntelR© Core i7-9700K @
3.60GHz with 64GB of RAM.

7.1. Offline Labeling Method
The solution of the label interval to row assignment for the

sequence with 40 labels takes 575ms and for smaller instances
(20 labels and less) it is found in less than 42ms (see Fig. 6) with
a relative optimality gap less than GT = 0.01 %. The reported
time measurements and optimality gaps are averaged over 100
runs.

The optimization in the within row label placement is defined
as convex QP; hence it can be solved in polynomial time [27].
Moreover, the label placement can be solved independently for
each row; therefore, the optimization is prompt and can run in
parallel.

7.2. Online Labeling Method
The computation of the proposed OnlineTemporal method

can be split into two phases. The solution for the initial frame

F0 is largely dependent on the search space, which is given by
the number of labels. Each label ` can be placed at any row
r ∈ R. The time needed to solve the initial frame is a period of
time when the interaction is not possible; thus, one has to wait
until the solution is found.

On the other hand, the search space for the following regular
frames F1, F2, . . . , Fn is narrowed by the constraint Const. (12)
(i.e., the vertical change of any given label must be at most a
single row). Therefore, label ` can be placed at any row `r

F−1
+c

where the c ∈ {−1, 0, 1}.
To limit the duration of the optimization for the initial frame,

we apply the time restriction

tlimit = exp (0.05 · |L|) , (24)

which in turn can increase the relative optimality gap G. The
solution for the initial frame F0 with 40 labels takes 7.4s with a
relative optimality gap of G = 0.03 %. The solution of smaller
instances (20 labels or less) is found in less than 145ms with a
relative optimality gap of G ≈ 0 %.

To limit the duration of the optimization for the regular
frames, we apply the time restriction

tlimit = log (1 + 0.005 · |L|) . (25)

The solution for regular frames with 40 labels takes 18ms with
a relative optimality gap of G = 7.7 × 10−6 %. The solution
of smaller instances (20 labels or less) is found in less than
5ms with a relative optimality gap ranging from 3.33 × 10−8 to
9.87 × 10−6 %. The reported time measurements and optimality
gaps are averaged over 100 runs. For more details see Fig. 6.

8. Comparison with State of the Art

We have implemented three previously published meth-
ods GrowingBorder [10], IntervalSlot [10], and GemsaMin-
Row [4] to compare them with the proposed OfflineTemporal
and OnlineTemporalmethods. The label layouts produced with
these methods are shown in Fig. 7(a)–7(f).

The GrowingBorder and IntervalSlot methods [10] were
designed for the annotation of dynamic virtual landscapes.
They connect each label to its vertical leader at a port in the
center of the bottom boundary of the label. Due to this con-
sistency, each label changes only its relative vertical position to
its anchor. The relative horizontal positions of each label to its
anchor is always the same (i.e., only the length of the leader
changes). This makes the movement of labels temporally co-
herent. The consistency can also facilitate finding the corres-
ponding label to the given anchor (and vice versa). However,
due to this fact, the methods may produce label layouts with
longer leaders. Furthermore, they allow the leaders to intersect
with labels of other anchors. Note that the latter two features
can make finding the corresponding label to the given anchor
(and vice versa) harder.

The GemsaMinRow method [4] was not intended for the an-
notation of dynamic scenes. Therefore, we apply the method
to each frame independently. We do not expect the method to
achieve a temporally coherent movement of labels. The method
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(a) Proposed OnlineTemporal method (b) Proposed OnlineTemporal method with extensions

(c) Proposed OfflineTemporal method (d) IntervalSlot method

(e) GrowingBorder method (f) GemsaMinRow method

Figure 7. Example of label layouts calculated for the mountain peaks in the test sequence S 3 approximated by point anchors.

produces label layouts where the leaders do not intersect with
any label, but create clusters of long leaders due to this con-
straint, see Fig. 7(f). We have included the method into the com-
parison to examine whether the intersections of leaders with la-
bels influence the users’ ability to find the corresponding label
to the given anchor (or vice versa).

All compared methods were evaluated on three different se-
quences S 1, S 2, S 3 with a minimum length of 101 frames.
The sequences are created by a series of horizontal and ver-
tical movements that simulate, e.g., the flight of a drone. Se-
quence S 1 consists of a long left truck (a leftwards horizontal
movement of a camera) with a close anchor in front followed
by a short pedestal down (a downwards vertical movement of a
camera) where the anchors start to disappear rapidly. Sequence
S 2 is composed as a sequence of a left truck, followed by a dolly
in (a forward movement of a camera) completed by a pedestal
up where the anchors start to appear rapidly. Sequence S 3 is
created by a long right truck. Pan and tilt movements are not
included as they do not introduce a parallax effect; therefore,
the labeling does not change a lot, and it remains almost the
same except for the newly appeared anchors on the edges of the
drawing region D. Nevertheless, pan and tilt movements are
included in the interactive experiment in Sec. 11.2.

To further describe the sequences, we measured several an-
chor related parameters and characteristics for each sequence,
please see Tab. 1 and Fig. 8. The mean number of anchors
within sequence S 1 and S 2 is 27 anchors, whereas, in the se-

quence S 3, it is only 21 anchors. The most noticeable changes
concerning the anchors’ x-position happen in the sequence S 1
(with the maximum shift of 31.97 pixels) and S 3 (with the max-
imum shift of 8.98 pixels). Regarding the anchors’ y-position,
only the anchors in the sequence S 1 and S 2 move dramatic-
ally. The length of an anchor interval reflects the distance that
the anchor travels from the point it appears to the point it dis-
appears. Allow us to point out that this also defines the space
that is allocated for the smooth and uninterrupted movement
of its label. Therefore, as the Anchor Interval Length section
within Tab. 1 shows, in the sequence S 1 and S 3 exists an an-
chor that (a) moves very quickly in comparison to the other
anchors, and (b) whose label interval allocates approximately a
half of a row in a label layout. On average, an anchor is present
in 98 out of 139 frames (71 %) in the sequence S 1, and more
anchors disappear than appear throughout the sequence. The
other two sequences S 2 and S 3 follows almost the same pres-
ence of 69 % and 67 %, respectively. The density maps of
anchors’ x-coordinates (ax) depicted in Fig. 8 reveals that (with
respect to the bin size of 50 px, Dw ≈ 1200 px) in sequence S 1,
there is one cluster of six anchors, 32 clusters of four anchors,
171 clusters of three anchors and 754 clusters of two anchors.
For more details about sequences, please see Tab. 1 and Fig. 8.
In addition, the tested sequences are available online as a part
of the supplementary material.

For all compared methods, we evaluate if the label layouts
produced for the sequences S 1, S 2, and S 3 are temporally co-
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(a) Sequence S 1 (b) Sequence S 2 (c) Sequence S 3

Figure 8. Density of anchors’ x-coordinates (ax) over frames of test se-
quences S 1 (a), S 2 (b) and S 3 (c). The anchors are accumulated into bins
with a width of 50 pixels.

Parameters Sequence

S 1 S 2 S 3

Number of Frames 139 228 101
Frame Dimensions 1200×400 1200×400 1281×346

Number of Anchors anchors

Minimum 21 19 26
Mean 27 21 27
Maximum 30 24 30

Anchor Shift in Frame pixels (x, y)

Minimum (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
Mean (0.36, 0.32) (0.20, 0.19) (0.54, 0.19)
Maximum (31.97, 5.51) (1.66, 2.40) (8.98, 0.86)

Anchor Interval Length pixels

Minimum 1.20 0.10 0.90
Mean 38.40 30.68 44.48
Maximum 663.73 159.15 534.69

Anchor Presence no. of frames

Shortest 7 6 9
Mean 98 158 68
Longest 139 228 101

Anchor Presence Change no. of anchors

Appeared 19 18 23
Disappeared 24 19 22

Anchor Clusters no. of clusters (bin size 50 px)

Size 6 1 0 3
Size 4 32 6 3
Size 3 171 144 132
Size 2 754 1445 613

Table 1. Parameters of test sequences. Mean Anchor Shift in Frame is cal-
culated from individual mean shifts of anchors over a sequence. Anchor
Interval Length is equivalent to an absolute change of anchor’s x-position.

herent and if the label layouts allow users to find the corres-
ponding label to the given anchor (or vice versa). Furthermore,
we evaluate users preferences among all compared methods.

9. Quantitative Evaluation

In the quantitative evaluation, we have measured properties
(vertical compactness, vertical displacement, and horizontal
displacement) of the produced label layouts for the sequences
S 1, S 2, and S 3 for each of the compared methods.
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Figure 9. Quantitative metrics: (a) The maximum number of rows per se-
quence of the label layout. Total label displacement per sequence in ho-
rizontal (b) and vertical (c) direction. The ∆y for the OfflineTemporal
method is zero. The tested sequences S 1, S 2, S 3 are represented by in-
dividual colors.

The vertical compactness of the label layout can be described
by the maximum number of rows Mr in a sequence. The meth-
ods producing label layouts with lower Mr are able to position
the same number of labels on a lower number of rows. The
compactness is important as the labels must fit into a labeling
region L of finite height. Furthermore, label layouts with high
Mr will lead to long leaders that can make finding the corres-
ponding label to the given anchor (and vice versa) harder.

The results (see Fig. 9(a)) show that the OfflineTemporal
method, followed by the OnlineTemporalmethod, achieves the
best results. Note that the GrowingBorder and GemsaMinRow
methods achieve the worst results leading to longer leaders.

For the temporally coherent movement of labels, the labels
must not jump abruptly. Therefore, we have calculated the dis-
placement metric for the compared methods in horizontal ∆x

and vertical ∆y direction separately as the sum of differences
in the positions of all labels between all pairs of subsequent
frames.

The results (see Fig. 9(b) and 9(c)) suggest that labels in
our proposed methods are more temporally coherent than in
the other compared methods. The most significant discrepancy
is visible in horizontal displacement ∆y. The GemsaMinRow
method achieves the worst results for both horizontal displace-
ment ∆x and vertical displacement ∆y. This is expected as the
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method was not designed for the labeling of dynamic scenes.

10. Accuracy Experiments

We have conducted a user study to assess whether the pro-
posed OfflineTemporal and OnlineTemporal methods (1) im-
prove the ability of the user to follow the labels in time and (2)
influence the ability of the label layout to mediate the intercon-
nection between the labels and the features.

For the evaluation, we have created a web application that
the participants accessed through a web browser. First, each
participant was instructed about the testing procedure; then, the
participant provided their age and gender.

The evaluation was divided into two experiments. The first
experiment was one factor with four levels. The independent
variable was the labeling method. The four levels were our
OfflineTemporal method and IntervalSlot, GrowingBorder,
and GemsaMinRow methods. The follow-up experiment was
one factor with one level. Again, the independent variable was
the labeling method. The only level was the OnlineTemporal
method. In both experiments, we evaluated the methods for
three sequences S 1, S 2, S 3.

Both experiments were designed as a between-subject. In
other words, one participant was tested with only one labeling
method to eliminate the learning effect and fatigue. For each
participant, the order of sequences was counterbalanced with a
3x3 balanced Latin square [28, Section 5.11] to eliminate the
carry-over effect. In a between-subject design, combining the
results of the two experiments is trivial as each level is evaluated
independently of the other levels.

Both experiments consisted of a series of three tasks defined
as follows:

Task 1. Locate the label associated to a highlighted anchor.

Task 2. Locate the anchor associated to a highlighted label.

Task 3. Follow a moving label for two seconds and then se-
lect the label in the blind view (i.e., the text of the
label is not shown).

For a detailed description of the tasks, please see the supple-
mentary document and video1.

Each participant repeated each task 10 times for each se-
quence. We measured the error rate (the number of wrongly
selected labels/anchors relative to all selected labels/anchors).
Afterward, we conducted a subjective evaluation of the visual
search easiness (task 1–3), the confidence (task 1–2) and the
need to focus (task 3). The participants provided their subject-
ive evaluation on Likert scales from 1 to 5.

Task 1 and its subjective evaluation was completed by 60 par-
ticipants (12 females) with the age ranging from 19 to 54 years
(x̄ = 25.31; σ = 6.49) in the first experiment and by 35 parti-
cipants (three females) with the age ranging from 20 to 38 years
(x̄ = 24.03; σ = 4.62) in the second experiment. Task 2 and its

1Supplementary material is available at the project page http://cphoto.
fit.vutbr.cz/interactive-labeling/

subjective evaluation was completed by 49 participants (11 fe-
males) with the age ranging from 19 to 54 years (x̄ = 25.86; σ
= 7.04) in the first experiment and by 25 participants (two fe-
males) with the age ranging from 20 to 38 years (x̄ = 23.92; σ =

4.76) in the second experiment. Finally, task 3 and its subjective
evaluation was completed by 44 participants (10 females) with
the age ranging from 19 to 54 years (x̄ = 26.32; σ = 7.29) in the
first experiment and by 24 participants (two females) with the
age ranging from 20 to 38 years (x̄ = 23.92; σ = 4.86) in the
second experiment.

For each task and each measured variable, we define a family
of two null hypotheses – H1

0 : “The difference in the mean value
of the OfflineTemporal method and the mean value of each
other compared method is zero,” and H2

0 : “The difference in
the mean value of the OnlineTemporal method and the mean
value of each other compared method is zero.” The family of
hypotheses consists of 7 pairwise comparisons.

We evaluated the collected data for all sequences together.
We performed a statistical evaluation of the measured data us-
ing confidence intervals. We calculated the confidence intervals
of the error rates as adjusted Wald intervals, a method recom-
mended for completion rates [29, 30]. We calculated the confid-
ence intervals for Likert scales as confidence intervals for rating
scales [31, Chapter 3]. We used 95% confidence intervals for
error rates and Likert scales.

For tasks 1 and 2, the average error rates and average score
from subjective evaluation together with their 95% confidence
intervals are shown in Fig. 10(a) and 10(b). For task 3, the av-
erage error rates, and average scores from the subjective evalu-
ation, together with their 95% confidence intervals, are shown
in Fig. 10(c). Please note that the 95% confidence intervals can-
not be directly used to visually evaluate the difference between
the means if multiple pairwise caparisons are evaluated.

To detect whether the means of the measured data are signi-
ficantly different, we have calculated [32] the p-value from the
95% confidence interval of the difference between the means for
all seven pairwise comparisons. To keep the type 1 error at sig-
nificance level α = 0.05 for the whole family of hypotheses, we
have adjusted the p-values with the Holm’s [33] sequentially-
rejective method using the Šidák equation [34] as described by
Ludbrook [35]. Please note that in certain cases, the method
produces the same adjusted p-values for several pairwise com-
parisons. We report the adjusted p-values in Fig. 10. As we are
adjusting the p-values, not the significance level α, we compare
all adjusted p-values with α = 0.05.

10.1. Task 1: Assign Label to Highlighted Anchor

The results (Fig. 10(a)) show that the OfflineTemporal
method achieves a significantly lower error rate than the On-
lineTemporal, GrowingBorder, and GemsaMinRow methods.
The OnlineTemporal method achieves a significantly lower er-
ror rate than the GrowingBorder and GemsaMinRow methods.

In the subjective evaluation, we have not detected any signi-
ficant difference for the easiness and for the confidence.

The results indicate that the label layouts with longer leaders
(GrowingBorder and GemsaMinRow) negatively influence the
ability of users to assign the correct label to the selected anchor.

http://cphoto.fit.vutbr.cz/interactive-labeling/
http://cphoto.fit.vutbr.cz/interactive-labeling/
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Figure 10. Results of the Accuracy Experiment: Error rate and subjective score for the task 1 (a), task 2 (b), and task 3 (c).

The leaders that do not intersect the labels (GemsaMinRow) do
not compensate for the longer leaders.

10.2. Task 2: Assign Anchor to Highlighted Label

The results (Fig. 10(b)) show that the OfflineTemporal and
OnlineTemporal methods achieve a significantly lower error
rate than the GemsaMinRow method.

In the subjective evaluation of task 2, we have not detec-
ted any significant difference for easiness. However, the parti-
cipants were significantly more confident that they are selecting
the correct anchor with the OnlineTemporal method than with
the GemsaMinRow method. In our opinion, the clusters of long

leaders created by the GemsaMinRowmethod are the reason for
the poor performance of the method.

10.3. Task 3: Follow the Moving Label
The results (Fig. 10(c)) show that the OfflineTemporal

method achieves a significantly lower error rate than all other
methods. The OnlineTemporal method achieves a significantly
lower error rate than the IntervalSlot, GrowingBorder and
GemsaMinRow methods.

In the subjective evaluation of task 3, the participants repor-
ted that the task was significantly easier to complete with the
OfflineTemporalmethod than with all other methods. The task
was significantly easier to complete with the OnlineTemporal



Preprint Submitted for review / Computers & Graphics (2021) 13

method than with the IntervalSlot, GrowingBorder, and Gem-
saMinRowmethods. Furthermore, the participants reported that
they had to focus significantly less with the OfflineTemporal
method than with the the OnlineTemporal, IntervalSlot, and
GemsaMinRow methods. With the OnlineTemporal method
they had to focus significantly less than with the IntervalSlot
and GemsaMinRow methods.

The results strongly indicate that lower displacement of la-
bels between the frames improves the accuracy of the users in
following a moving label.

10.4. Summary

In general, the results show that for the three sequences S 1,
S 2, S 3 our proposed OfflineTemporal method followed by
the OnlineTemporal method allow to follow labels moving in
time significantly more accurately than the compared methods.
At the same time, our OfflineTemporal and OnlineTemporal
methods mediate the interconnection between labels and an-
chors the same as (IntervalSlot for tasks 1 and 2 and Grow-
ingBorder for task 2) or better than (GemsaMinRow for tasks 1
and 2 and GrowingBorder for task 1) the compared methods.
We were especially surprised by the poor performance of the
GemsaMinRow method in tasks 1 and 2. It seems that forcing
the leaders not to intersect with labels is counterproductive as it
leads to clusters of long leaders.

In conclusion, we recommend using the proposed methods
over the compared methods for sequences with similar charac-
teristics as the sequences S 1, S 2, S 3.

11. Preference Experiments

To assess the users’ preferences among different labeling
methods, we have conducted two subjective experiments. The
first was designed as non-interactive (i.e., participants could not
influence the pose of the camera in the scene), and the second
as interactive (i.e., participants were asked to interact with the
camera in the scene).

11.1. Non-Interactive Environment

To capture users’ preferences in a non-interactive environ-
ment, we conducted an experiment based on a psychophysical
technique of paired comparisons [36, 37]. Specifically, we ex-
ploited the two-interval forced choice (2IFC) paradigm to verify
the perceived quality of labeling methods (GemsaMinRow,
GrowingBorder, IntervalSlot, OfflineTemporal, OnlineTem-
poral, and its extended version by alpha-blending denoted as
OnlineTemporalAlpha).

At the beginning of the experiment, participants were famil-
iarized with the experimental procedure by the written instruc-
tions. Participants were asked to focus on the visual present-
ation of the labels and then select the method they liked the
most. During the experiment, participants were able to play the
assigned sequence as many times as they wanted. The names of
the methods were transcoded with numbers. The stimuli were
represented by three different video sequences presented in a

web browser, and we evenly distributed them among the parti-
cipants. Each participant was sequentially stimulated by a pair
of labeling methods applied to the assigned sequence.

We have collected two groups of participants A and B, each
consisting of 40 persons. The participants in group A — 40
males and 10 females with the age ranging from 19 to 54 years
(x̄ = 26.61; σ = 7.46) — were asked to compare all pairs of
GemsaMinRow, GrowingBorder, IntervalSlot, OfflineTem-
poral. Therefore, each participant in group A contributed with(

m
2

)
= 6 pairwise comparisons where m = 4. Moreover, the

order of the pairs of methods to compare was counterbalanced
with a 6x6 balanced Latin square [28, Section 5.11] to elimin-
ate learning and carry-over effects. Based on the outlier ana-
lysis tool provided by Pérez-Ortiz and Mantiuk [38], four par-
ticipants (two males, two female) that behave very differently
from the others were removed. The participants in group B
— 36 males and four females with the age ranging from 17
to 44 years (x̄ = 26.18; σ = 5.76) — were asked to compare
randomized pairs of {GemsaMinRow, GrowingBorder, Inter-
valSlot, OfflineTemporal} × OnlineTemporal extended by a
pair of OnlineTemporal × OnlineTemporalAlpha which was
presented as the last pair of the experimental procedure. There-
fore, each participant in group B contributed with five pairwise
comparisons. Together, group A and B created an incomplete
experimental design (i.e., only several pairs are compared) to
reduce the number of needed pairwise comparisons.

We stored the data in the count matrix C for each participant
separately. The element ci j represents the number of times
that method i was selected over method j. We converted the
per-participant-count matrices C into a quality score (z-score)
scale and computed a statistical significance using a customized
MATLAB framework [38].

To transform the count matrix C to the quality score scale,
we used Thurstone’s Law of Comparative Judgment model con-
cerning Case V [38, 37]. In order to reject the null hypothesis
H3

0 : “the difference in perceived quality scores is zero,” we ap-
plied the Two-tailed test at a significance level of α = 0.05.

The quality scores for compared methods are depicted in
Fig. 11(a). The results show that the proposed OfflineTemporal
method exhibit the best quality score followed by OnlineTem-
poralAlpha and OnlineTemporal. The results also suggest that
the best of the previously published methods is considered to
be IntervalSlot followed by GemsaMinRow and GrowingBor-
der. The statistical significance for surveyed methods is presen-
ted in Fig. 12(a). The quality difference between the proposed
OfflineTemporal and OnlineTemporal is statistically signific-
ant. Therefore, we can reject the null hypothesis H3

0 for the
pairs of OfflineTemporal × {OnlineTemporal, IntervalSlot,
GrowingBorder, GemsaMinRow}. The OnlineTemporalAlpha
has a higher quality score (q = 0.34) than OnlineTemporal
(q = 0.15). However, H3

0 can not be rejected for this pair and
more generally for any other pair of {OfflineTemporal, Online-
Temporal} × OnlineTemporalAlpha. Therefore, the suggested
additional quality of alpha-blending is not statistically proved.
In addition, we have not detected significant difference in per-
ceived quality among the IntervalSlot, GrowingBorder and
GemsaMinRow methods.
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Figure 11. Quality scores and 95% confidence intervals for (a) non-interactive and (b) interactive experiment.
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Figure 12. Statistical significance (p-values reported in brackets) and quality scores for (a) non-interactive and (b) interactive experiment.

11.2. Interactive Environment
To capture users’ preferences in the nature of an interact-

ive environment, we conducted a follow-up experiment. Parti-
cipants had to rank the labeling methods suitable for interactive
applications (GrowingBorder, IntervalSlot, OnlineTemporal
and OnlineTemporalAlpha) from the best perceived method to
the worst. We transcoded the names of the methods with num-
bers, and the first shown method was randomized. At the begin-
ning of the experiment, participants were familiarized with the
experimental procedure by the written instructions. We instruc-
ted the participants to focus predominantly on the assessment of
label placement and the movement of the labels in time. After
they read the instructions, the supervisor again repeated all the
important details. The stimuli were represented by an interact-
ive visualization of mountain terrain presented at a resolution
of 1200x900, where the independent variable was the labeling
method. During the experiment, participants were guided along
the same predefined path above mountain peaks. They could
interact with the scene by the following operations whenever
they wanted: (1) fly forward/backward and stop, (2) rotate the
camera, (3) zoom in and out, (4) return to the beginning of the
path, and (5) change the labeling method. For convenience,
we provided participants with printed cards to ease the ranking
R during the experiment. At the end of the experiment, par-
ticipants were asked to describe their decision process and to
justify their ranking.

A total of 15 participants (two females) with the age ran-
ging from 22 to 35 completed the experiment in t̄ = 14 minutes
(σ = 3.5). Based on the described decision process and justi-
fication description, we removed three participants (two males,
one female) that were wrongly focused on the other aspects of
the presented stimulus (e.g., the length of leaders, the render-
ing method, or correspondence of the label’s row with the dis-

tance from the camera). The removed participants were also
suggested by the outlier analysis tool provided by Pérez-Ortiz
and Mantiuk [38].

To be consistent with the previous experiment, we chose once
again to apply the pairwise comparison paradigm. We used the
transitive closure to transform the ranking R to the count mat-
rix C. For example, the participant’s ranking A, B,C was trans-
formed to a pairwise comparison [A, B], [B,C], [A,C]. After-
ward, we derived the quality score by Thurstone’s Law of Com-
parative Judgment model concerning Case V [38, 37]. In order
to reject the null hypothesis (the same as H3

0 from Sec. 11):
“the difference in perceived quality scores is zero,” we applied
the Two-tailed test at a significance level of α = 0.05.

The quality scores for the compared methods is depicted in
Fig. 11(b). The results show that the proposed methods — On-
lineTemporalAlpha, OnlineTemporal— exhibit the best qual-
ity score followed by IntervalSlot and GrowingBorder. The
statistical significance for the surveyed methods is presented in
Fig. 12(b). The OnlineTemporalAlpha has a higher quality
score (q = 3.25) than OnlineTemporal (q = 0.82). Unlike
the previous non-interactive experiment, the results show that
the quality difference between the proposed OnlineTemporal
and OnlineTemporalAlpha is statistically significant. There-
fore, we can reject the null hypothesis H3

0 , and the suggested
additional quality of alpha-blending is, in this case, statistic-
ally proved. Furthermore, we can reject the null hypothesis
H3

0 for the pairs of {OnlineTemporal OnlineTemporalAlpha}
× {IntervalSlot, GrowingBorder}. Consistently with the pre-
vious experiment, we have not detected a significant difference
in perceived quality between the IntervalSlot and Growing-
Border.
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12. Conclusions

We proposed two novel temporally stable screen-space meth-
ods for boundary labeling of dynamic scenes using an optim-
ization approach. The OfflineTemporal method is designed
for the offline processing of the dynamic scene in advance
(e.g., drone-shot videos annotation, visualizations in television
news). On the other hand, the OnlineTemporal method is de-
signed for interactive applications (e.g., terrain viewers, aug-
mented, and virtual reality applications). Both proposed meth-
ods can be easily extended by additional terms and constraints
to customize the resulting label layout, such as visibility optim-
ization based on prominence and alpha-blending extension for
smooth label transition. We show that according to the results
of quantitative evaluation, the label layout is as compact as pre-
vious methods. At the same time, labels are more stable during
an interaction with the scene. Furthermore, we compared the
methods with three previously published methods in an extens-
ive user study. The results of the accuracy experiment show that
with our methods, the users can follow moving labels signific-
antly more accurately than with the concurrent methods. At
the same time, our methods mediate the interconnection ability
between labels and features the same as or better than the other
methods. Moreover, the results of the preference experiment
show that the proposed methods were ranked the best for both
interactive and non-interactive boundary labeling of dynamic
scenes.

The proposed methods are seemingly more involved and
harder to implement than the compared state-of-the-art meth-
ods. However, the labeling approached as an optimization prob-
lem yields a higher level of flexibility, which allows extending
the proposed formulations for diverse needs. Furthermore, the
difference between the lower and upper bounds used to solve
MIP problems provide a quality measure of the solution to op-
timality. Another drawback of our approaches is the time-to-
solve span for the initial frame which grows with an increasing
number of labels in a scene. We tackled this issue by limit-
ing the available time in favor of optimality; however, in fu-
ture work, this could be approached differently (e.g., by further
narrowing the search space similar to the approach for regular
frames).
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