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Abstract

This work addresses the problem of camera elevation estimation from a single photo-
graph in an outdoor environment. We introduce a new benchmark dataset of one-hundred
thousand images with annotated camera elevation called Alps100K. We propose and
experimentally evaluate two automatic data-driven approaches to camera elevation es-
timation: one based on convolutional neural networks, the other on local features. To
compare the proposed methods to human performance, an experiment with 100 subjects
is conducted. The experimental results show that both proposed approaches outperform
humans and that the best result is achieved by their combination.

1 Introduction

In outdoor environments one of the more important and informative attributes is the eleva-
tion: the height of a geographic location above the sea level. Estimation of elevation has a
long history [7]. Nowadays, elevation data are important for a number of applications, in-
cluding earth sciences, global climate change research, hydrology, and outdoor navigation.
Traditionally the assessment of elevation was the domain of geodesy, which offered several
means to measure altitude. Among the most popular methods are barometric altimeters,
trigonometric or leveling measurements, and Global Positioning System (GPS).

A rich natural heritage is captured and expanded everyday in the form of landscape pho-
tos and videos with an ever-growing geographic coverage of outdoor areas, see Figs. 1 and 2.
Unfortunately, almost all currently available photos and videos lack elevation information.
Moreover, a majority of them do not even contain the GPS coordinates. In this paper, we
tackle the problem of estimating the elevation from visual data only. Automatic annotation
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Figure 1: A sample from the new benchmark dataset Alps100K [6]. Image credits - flickr
users: Allie_Caulfield, Golf Resort Achental Team, Erik, Guillaume Baviere, Tadas BalCiu-
nas, antoine.pardigon, twiga269, Karim von Orelli.
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Figure 2: Left: normalized elevation histogram of the Alps mountain range (red) and the
distribution of elevations in the Alps100K dataset (green). Right: geographic coverage of
the new dataset.

of images with an accurate estimate of the elevation can be exploited in a number of applica-
tions ranging from leisure activities and tourism applications to image database exploration,
education purposes and geographic games.

Contributions. In order to evaluate elevation estimation methods, we introduce a new
dataset containing approximately 100K images of natural environments accompanied with
the GPS and elevation information (Section 3). We propose two methods of elevation es-
timation from image content: one based on convolutional neural networks (CNN) [31], the
other exploiting bag-of-words (BOW) based image retrieval [15, 26]. The proposed methods
are compared to a human performance in Section 6. To estimate the human performance
on this task, an experiment was conducted counting 100 subjects (Section 4). The proposed
automatic elevation estimation methods outperform knowledgeable humans, and, moreover,
the hybrid combination of BOW with CNNs results in the best predictions.

2 Related work

We are not aware of any attempt to predict the camera elevation from visual information
contained in a landscape photograph of a natural environment. However, the related field
of research is the one of visual geo-localization. If we were able to localize the position
of the camera, the task of elevation estimation would reduce to a simple query into a geo-
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referenced terrain model. Unfortunately existing geo-localization methods [2, 3, 14, 29, 30]
are neither robust nor sufficiently accurate for this task. Conversely, the methods presented
in this paper may improve geo-localization techniques by reducing the search space to only
probable camera elevations.

Height above the ground is among the most important information for navigation of
Unmanned Aerial Vehicles (UAV). The problem of elevation estimation for UAVs has been
attacked using computer vision because it has several advantages: it is a passive system, has
low energy consumption, and visual information can be reused for navigation or localization.
The proposed solutions are based on artificial ground-located landmarks [12, 25], optical
flow [5, 27], stereoscopic vision [11, 16, 20], and machine learning [8]. Most of these
methods assume that the camera’s viewpoint is oriented to the ground and that the camera
parameters are known. In contrast, in this work we aim to assess the absolute elevation of the
camera. Moreover, the hereby proposed methods work on ordinary photographs of natural
outdoor environments. Our scenario is more challenging, since both camera orientation and
calibration information is missing.

The lack of work devoted to elevation estimation may be explained by the absence of a
suitable dataset. The recently published Places 205 [31] is a dataset for training scene classi-
fiers. It contains 205 scene categories and almost 2.5 million images of which a subset could
be selected for our task. Unfortunately, Places 205 contains neither elevation information
nor GPS coordinates. IM2GPS dataset [14] does contain GPS coordinates for each image;
however, these images are mostly captured in cities with a significant bias towards landmarks
like the Eiffel tower or the Sydney opera house. This renders IM2GPS dataset useless for
our purpose because we focus on landscape photos of outdoor environments, like the ones
shown in Fig. 1.

3 Alps100K: a new dataset

We introduce a new dataset of almost 100K annotated (GPS coordinates, elevation, EXIF
if available) outdoor images from mountain environments. The collection covers vast geo-
graphic area of the Alps, the highest range in Europe; therefore we name it Alps100K. The
images exhibit high variation in elevation as well as in landscape appearance. Furthermore,
the collection spans all the seasons of the year. To the best of our knowledge, this is the first
dataset of this kind. It contains test sets to evaluate elevation estimation performance (see
Section 4 for human performance and Section 6 for results of the proposed automated meth-
ods). A large proportion of the dataset serves as a training set for the data-driven approaches.

Dataset acquisition. First we create a list of all hills and mountain peaks located in the
seven Alpine countries (Austria, France, Germany, Italy, Liechtenstein, Slovenia, Switzer-
land) from the OpenStreetMap database [9]. The list of hill names is used to query the
Flickr! photo hosting service. In order to increase the ratio of outdoor images certain tags,
such as wedding, family, indoor, still life, are excluded. Only images containing information
about the camera location are kept. Out of 1.2M crawled images, about 400K are unique and
inside the Alps region.

To cull irrelevant (non-landscape) images a state-of-the-art scene classifier [31] is ap-
plied. Probabilities of 205 scene categories are assigned to each image. We experimentally
select 28 categories (mountain, valley, snowfield, etc.) and keep only those images whose

"http://www.flickr.com
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cumulative probability in those categories exceeds 0.5. This step significantly improves the
relevance of the dataset at the expense of reducing the number of images to circa 25%.
Finally the elevation of the camera is inferred from the GPS coordinates via the digital
elevation model®. This model covers the Alps with 24 meter spaced samples. The collec-
tion contains 98136 outdoor images that span almost all possible elevations observed in the
Alps [0, 4782m]. Fig. 2 left compares the elevation distribution of the Alps surface and the
elevations in the dataset, Fig. 2 right shows the spatial distribution of the collected images.
Geographically the dataset covers virtually all the regions of the Alps with obvious concen-
trations in tourist spots (e.g., around Zermatt village in Switzerland). The EXIF information
is available for 41364 images, which is 42% of the Alps100K dataset. The the presented
dataset along with elevation and GPS meta-data is available at the project webpage [6].

4 Human performance in elevation estimation task

In this section we measure the ability of humans to estimate camera elevation from an im-
age. The achieved accuracy is subsequently compared to results achieved by the methods
proposed in this paper.

During the experiment 100 participants were asked to estimate the camera (not the de-
picted scene) elevation for each of the 50 test images. We utilized a custom web-based
interface where the participants assessed the elevation of each test image (for an example
see Fig. 1) using a slider (see more details on the experiment in the supplementary mate-
rial available at the project webpage [6]). The elevation of the test images ranged in [79m,
4463m] (see green crosses in Fig. 3). The images were presented in randomized order, at
the resolution of 750x500px. After the experiment was finished participants filled out a
questionnaire where additional information about their age, experience with the Alps, high-
est reached elevation, etc., was gathered. The subjects needed 10 minutes on average to
complete the experiment.

4.1 Experimental results

Are humans able to estimate the elevation from an image? We use the analysis of
variance (ANOVA) test [4] which determines whether there is a systematic effect of an
image (i.e., the elevation) in human elevation predictions, or whether the predictions are
random. Formally, we state the null hypothesis Hy as follows: there is no significant differ-
ence between elevation predictions for the test images. This hypothesis is clearly rejected
(F(49,4950) = 165.09, p < 0.001), meaning that humans can indeed estimate the camera
elevation from the visual information in images.

How well can humans predict the camera elevation? The predictions for each test image
along with the ground truths are plotted in Fig. 3. The overall root-mean-squared error
(RMSE) of human elevation predictions is RMSE(H) = 879.95m. It can be observed that
people underestimate high elevations, i.e., elevations above 3000m. In accordance with this,
variance of the elevation predictions grows for high altitudes as well.

The effect of human age, sex, experience and other factors collected in post-experiment
questionnaire was also analyzed. None of those factors were found statistically significant.

2 Available from http://www.viewfinderpanoramas.org
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Figure 3: Comparison of the elevation estimation by humans and the proposed methods
(CNN, BOW and combination). Blue boxes show the span of the human predictions: the red
mark is the median, the edges of the box are the 25" and 75™ percentiles respectively, the
whiskers extend to extreme human guesses that are not considered outliers, and outliers are
plotted individually as ’+’.

However, it is worth noting that our participants were either living in the Alps, had excep-
tional experience with outdoor sports, or both. Accordingly, the reported average prediction
errors should be taken as rather conservative ones.

5 Automatic elevation estimation from landscape photo

In this section we propose two approaches to estimate elevation from the visual content. We
use popular convolutional neural networks and methods based on local features and combine
them to exploit each approach’s strengths in a single hybrid method.

5.1 Convolutional neural networks (CNN)

The elevation estimation task can be treated as a standard regression problem where the goal
is to directly predict the real-valued elevation given the pixel data of a single photo. Convolu-
tional neural networks have proven to be the state-of-the-art in various image-based machine
learning tasks including object and scene classification [31], object detection [13], seman-
tic segmentation [18], and facial recognition [28]. We build upon the previous successes
and apply large convolutional networks to the Alps100K dataset. Considering the relatively
small size of the dataset, we initialize the networks from a network previously trained on
the Places205 dataset [31], which includes a rich collection of outdoor scenes among its 2.5
million images. Additionally, we extend the network inputs by EXIF data, which carries
information indicative of possible weather conditions and camera settings.

Convolutional network architecture. The basic network architecture follows previous
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Table 1: Architecture of the convolutional network. Layers up to fc6 were initialized from
Places-CNN network [31]. Resolution of the input is 227 x 227 pixels.

Layer | convl pooll conv2 pool2 conv3d conv4d convS pool5 fc6 fc7 fc8

units 96 96 256 256 384 384 256 256 4096 2048 1
kernel |11x11 3x3 5x5 3x3 3x3 3x3 3x3 3x3 - - -
features | S5x55 27x27 27x27 13x13 13x13 13x13 13x13 6x6 - - -

successful work on image classification. Specifically, it is the same as the one used in the
Caffe reference network® and the Places-CNN network [31], which are in turn very similar
to the network used by Krizhevsky et al. [17] to win the ImageNet challenge in 2012.

The main building blocks of the network (see Tab. 1) are convolutions followed by Rec-
tified Linear Units (ReLU). First, second, and fifth convolutional layers are followed by
max-pooling, each reducing resolution by a factor of two. The activations of the first and
second convolutional layers are locally normalized [17]. The output of the convolutional
part of the network is fed into a fully connected layer (fc6) with 4096 units. Weights of this
part of the network are initialized from network Places-CNN* [31].

The final two layers of the network are fully connected and contain 2048 and 1 neu-
rons, respectively. Weights of these layers were initialized from a normal distribution with
standard deviation 0.005 and 0.02, respectively. The final activation function is linear and
the optimization objective is Mean Squared Error (MSE). The network was trained by mini-
batch Stochastic Gradient Descent with momentum.

5.2 Local features

An alternative approach is based on the k-NN classifier [10]. Two efficient methods of ob-
taining nearest neighbours are considered: sparse high-dimensional bag-of-words (BOW)
based image retrieval [26], and image retrieval with compact image representation [15, 24].
In both cases, the number of neighbours k used to estimate the elevation is a function of the
confidence in the retrieved nearest neighbour.

The BOW approach has been shown to perform well for specific object and place recog-
nition, especially when combined with a spatial verification step [23], while the short-vector
image representations [15, 24] obtained by a joint dimensionality reduction from multiple
vocabularies show certain level of generalization power.

High-dimensional image representation (BOW). The majority of image retrieval methods
based on BOW representation follow the same procedure as introduced in [26]. First, local
features [21] such as multi-scale Hessian-Affine [22] are detected and described by an invari-
ant d-dimensional descriptor such as SIFT [19] or RootSIFT [1] for all images in the dataset.
Then the descriptor space is vector-quantized into a visual vocabulary: a K-means algorithm
is performed on an independent training dataset to create K clusters representing the visual
words. In our paper, K=1M visual words was used. Finally, a histogram of occurrences
of visual words is generated for each image followed by the inverse document frequency
weighting (idf), and sparse BOW vectors are obtained with dimensionality D=K.

To estimate the elevation of a photograph the photograph is used to query an elevation-
annotated image database (the training part of Alps100K). Efficient retrieval via the inverted

3 Available from the Caffe package http://caffe.berkeleyvision.org/model_zoo.html
4Available from http://places.csail.mit.edu
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file structure [26] is followed by a spatial verification step [23] to re-rank the results. If the
top ranked image is likely to be from the same location as the query image, i.e., the top ranked
image is spatially verified with high confidence (more than f;, features pass the verification
test), we use its elevation as the estimate. Otherwise, we use median of elevations of all
retrieved k-NN images.

Short-vector image representation (mVocab). Large scale image retrieval with short vec-
tors has recently became popular as a method for reducing high computational or memory
costs. In [15, 24] concatenated vocabularies of different origins followed by a joint dimen-
sionality reduction are used as short image descriptors.

In our experiments we follow [24] and combine eight different visual vocabularies of
8K visual words each. The vocabularies are constructed over two different measurement
regions and four power-law normalizations of SIFT descriptors. The region sizes are rxs
and 1.5xrxs (s is the scale of the detected feature, and r=3+/3 is the standard relative scale
change between detected region and the measurement region, as in [22]). The power-law
normalization of SIFT descriptors ranges $=0.4,0.5,0.6,1, where f=1 is the original SIFT
descriptors, while § = 0.5 corresponds to RootSIFT [1].

Camera elevation of landscape photographs is estimated by finding k-NN images from
the training dataset and taking the weighted average of their elevations. Weights w are cal-
culated using image dissimilarities d, w=max[0, 1 —d/(w:d})], where d; is the dissimilarity
of the top ranked image and w; is a constant, w;>1. The number of retrieved images is fixed,
but the number used from that set depends on their similarity to the top ranked image; in
addition, we can control the number used from the retrieved set by the appropriate choice
of parameter w;. Specifically, only images that have dissimilarity up to w;d; are used to
compute weighted average of elevations.

Parameter choice. We use the training dataset to learn the necessary parameters. For
all experiments presented in this paper t;,=8, w;=1.4 and k=100. Slight changes do not
significantly influence the presented results.

5.3 Combining the elevation estimators

The BOW representation with spatial verification has been shown to perform well in a spe-
cific object or location recognition. Since people take and share photographs from similar
locations, a natural approach is to recognize the specific location. On the other hand, BOW
does not generalize meaning that it does not perform well on unseen scenes. Therefore, we
propose a hybrid method that first tries to estimate the elevation by recognizing the location,
and if that fails, i.e., no spatially verified image is retrieved, then by a secondary estimator:
either mVocab or CNN.

6 Results

In this section we experimentally evaluate the proposed methods. A test set of 13148 im-
ages (13% of the datased) is randomly selected from Alps100K. The rest of the dataset (i.e.,
84988 images) is used for training. The selected measure of performance is an overall root-
mean-square error (RMSE) of elevation predictions with regards to the known ground truth
elevations. The outcome is summarized in Tab. 2, where Baseline denotes a simple elevation
predictor that reports the mean elevation of the training dataset for all queries. For complete-
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Table 2: Results (overall root-mean-square error in meters)

Method test dataset (13148 images) user experiment set (50 images)
Baseline 801.49; 786.42 1383.64; 1154.43
Human - 879.95

CNN 537.11 709.10

BOW 601.63 757.76

mVocab 610.36 811.00
BOW-+mVocab 564.14 646.89
BOW+CNN 500.44 531.05

ness we show the best achievable baseline RMSE values as well, i.e., using the mean of the
testing elevations (in italics).

All of the proposed methods perform better than the baseline. The best prediction accu-
racy among the individual methods is achieved by neural networks (CNN); however, this
is significantly improved by combining BOW with CNN. For a better understanding of
these results, we plot the fraction of correct predictions as a function of the elevation er-
ror, see Fig. 4, left. For more than one third of the test images, the BOW approach spatially
verifies the query image, which results in extremely low error rate. The specific place recog-
nition performed by the BOW approach seems to work well for this particular task because
the geographic distribution of the Alps100K dataset, which corresponds to reality, exhibits
many strong peaks at popular places (see Fig. 2, right). CNN, on the other hand, seems to
generalize better on previously unseen locations and it surpasses BOW in sparsely covered
regions. The combination of BOW and CNN achieves the best RMSE scores, and is more
robust as well.

1 1000
B S~
> ~ 0
& o
5098 CNN g CNN
§ BOW 2 -1000 BOW
BOW+CNN ] BOW-+CNN
‘ € .2000
0 500 1000 1500 2000 0 1000 2000 3000 4000
elevation error(m) true elevation (m)

Figure 4: Left: cumulative elevation prediction accuracy. Right: dependence of prediction
bias on image elevation.

The results for a subset of 50 images selected from the test dataset (used in user exper-
iment described in Section 4) are shown in the right column of Tab. 2, which compares the
performance of automatic elevation estimation to the performance of humans. Generally, all
of the proposed methods achieve better scores than humans. The best RMSE is again ob-
tained by the hybrid combination of BOW and CNN, which is on average significantly better
than humans. In Fig. 3 we plot the predictions for each of the 50 images separately. Interest-
ingly, BOW+CNN method exhibits a similar bias as humans; i.e., it tends to underestimate
the highest elevations (images #49, 48, 45, 41, 39, 38) and overestimate lowest elevations
(#2, 3). This tendency actually holds true for the whole test dataset, as illustrated in Fig. 4
right. We attribute this behavior to the distribution of elevations in Alps100K dataset, which
is less populated in both elevation extremes, as shown in Fig 2, left.
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Figure 5: BOW+CNN elevation predictions (blue) for three video sequences (green) cap-
tured using a camera with constant elevation and varying yaw and pitch.

CNN+EXIF information. Visual appearance of photographs is strongly influenced by the
season, the time of the day, and camera field of view. We encode time of the day, time of the
year, exposure coefficient, and camera field of view as a sparse binary vector and input it to
the first fully connected layer of the CNN (fc6). Each of the values is quantized to 16 discrete
levels and encoded as 1-of-N. The exposure coefficient (EC) combines relative aperture N,
exposure time #, and sensor sensitivity /SO into a single value that represents “sensitivity
of the photograph” to the light in the scene. Assuming that photos are properly exposed,
high EC values imply low-light conditions and low EC values imply bright conditions. EC
is calculated as EC = log, N> —log, ¢ - %. Camera field of view (FOV) indicates possible
composition of photographs. As most cameras do not store their field of view explicitly
in EXIF data, it needs to be computed from sensor size S and focal length f as FOV =
arctan (0.55/f).

The combination of CNN with EXIF information was evaluated on a smaller subset
of images with EXIF information available (36050 training and 5314 test images respec-
tively). On this subset, CNN+EXIF achieves RMSE=510m, compared to pure CNN with
RMSE=550m on the same subset. We conclude that the EXIF data bring a small improve-
ment in elevation predictions.

Video sequences. We evaluated the BOW+CNN method using three video sequences (#V1-
3 available at the project webpage [6]) in Fig. 5. The videos were acquired by a hand-held
point-and-shoot camera from spots of constant elevation (green lines), while changing cam-
era yaw and pitch. These videos represent challenging scenarios, in particular, due to the
varying pitch and high camera elevations (#V1=2215m, #V2=3088m, #V2=3789m). More-
over, no frame has been spatially verified by BOW in any case, and thus the prediction
accuracy depends solely on CNN. Nevertheless, the proposed method achieves decent ele-
vation predictions for #V1 and #V2. The third video (#V3) illustrates the limitations of the
current solution: the prediction accuracy for extremely high elevations is low, suffering from
a small number of appropriate images in the training set.

7 Conclusions

Multiple aspects of the camera elevation estimation task were addressed in the paper. A new
benchmark dataset of elevation-annotated images Alps100K was collected. Two approaches
were proposed to automatically estimate the camera elevation from a single landscape pho-
tograph. In an extensive user experiment, human performance on this task was measured.
Experimental evaluation showed that the proposed methods outperform human abilities in
camera elevation estimation. The best performing method first attempts to recognize spe-
cific location via BOW-based image retrieval, and in case of failure, uses CNN to estimate
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the elevation. In the future, we plan to extend the dataset to different geographic areas and
other climate zones.
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