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ARTICLE INFO ABSTRACT

We introduce Vision UFormer (ViUT), a novel deep neural long-range monocular depth
estimator. The input is an RGB image, and the output is an image that stores the abso-
lute distance of the object in the scene as its per-pixel values. ViUT consists of a Trans-
former encoder and a ResNet decoder combined with the UNet style of skip connec-
tions. It is trained on 1M images across ten datasets in a staged regime that starts with
easier-to-predict data such as indoor photographs and continues to more complex long-
range outdoor scenes. We show that ViUT provides comparable results for normalized
relative distances and short-range classical datasets such as NYUv2 and KITTI. We fur-
ther show that it successfully estimates absolute long-range depth in meters. We validate
ViUT on a wide variety of long-range scenes showing its high estimation capabilities
with a relative improvement of up to 23%. Absolute depth estimation finds application
in many areas, and we show its usability in image composition, range annotation, defo-
cus, and scene reconstruction. Our models are available at cphoto.fit.vutbr.cz/viut.
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1. Introduction Segmentation: Cross-Entropy Loss

This document contains supplementary materials for the “Vi- Instances: Cross-Entropy Loss
sion UFormer: Long-Range Monocular Absolute Depth Esti-

mation” paper.

Normals: Mean Squared Error Loss

Optical Flow: L2 Loss
2. Proposed Method

Diffuse Color: Mean Squared Error Loss
2.1. Training

. L . ) . Shading: Mean Squared Error Loss
During training, we utilize multiple modalities of data de-

pending on their availability within the current training dataset.
In order to train on the other modalities, we use the following
additional loss functions along with the primary L;:
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During the training, we alternate between batches of depth
and additional modalities. Each time we switch the model’s
heads to the corresponding modality in order to prevent chang-
ing weights for the heads of other modalities.

2.2. Datasets

We perform pre-processing on each of the ten training
datasets to improve their usability in the staged training.
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Test — GP3K [1] LSAR [2]
Model Train | RMS REL Logl0 ¢> 125! 1252 125 RMS REL Logl0 6> 125! 1252 125
ViUT (ours) Staged 128.875 0.104 0.073 1391 218 0.31 142.079 0.113 0.078 14.84  2.62 0.52
DPT [3] MIX 6 [3] 168.569 0.134  0.090 17.87  4.33 1.27 184.484 0.140 0.094 1948  5.45 1.82
AdaBins [4] KITTI [5] 184.471 0.144 0.097 18.47  4.74 1.47 188.189 0.149 0.102 19.94  5.83 1.99
MiDaS [6] MIX 5 [3] 254347 0.212  0.150 2482 1046 432 269.152 0.218 0.156 26.48 1240 5.41
MegaDepth [7] MegaDepth [7] 933.634 0.739  0.343 37.47 2742 20.67 950427 0.746 0.344 39.74 2990 22.79
Pix2Pix [8] Mannequin [8]  1626.690 1.363  0.390 4327 3170 2535 1646.842 1.370 0.391 4324 31.68 25.33
WSVD [9] WSVD [9] 903.431 0.714 0.343 3286 21.84 13.16 919.772 0.720 0.343 3474 2488 17.04

Table 1: Depth Estimation: Additional evaluation results of various state-of-the-art techniques on the Geopose3K [1] and LandscapeAR [2] datasets. For a

definition of the metrics, see Sec. 4.2 of the main paper.

EDEN [10] We train on the raw depths, taking their values as
absolute distances in meters. The other modalities are trained
by using the specific loss functions as specified above. For op-
tical flow, we use the ForwardFlow files. For shading, we use
the Glossy color outputs.

SINTEL [11] We use the final render, including all of the ef-
fects as the input. We scale the depths using min-max scaling to
reduce them from the original range into 0.0 to 1.0 values. We
use 100m as the maximum, clipping any values that go outside
of this range. Finally, we use the clean renders without effects
as the prediction target for the Shading modality.

DIW [12] We pre-process the ordinal point-wise depth rela-
tions into sparse relative depth maps. We then train on these as
two separate modalities. We use Binary Cross-Entropy Loss for
the point-wise relations and Mean Squared Error for the sparse
maps. During training, we use each image exactly once, even
when it is assigned with multiple user inputs. We also randomly
sample the images into input batches so that each training epoch
does not contain all available training inputs.

NYU [13] We use the original depths without scaling and utilize
the provided instances and segmentation maps.

TUM [14] We automatically align the RGB and depth se-
quences by searching for the closest match. For this, we use
the provided timestamps as suggested by the authors. We use
the depths without any additional scaling.

MegaDepth [7] For training, we use both the relative and ordi-
nal depth maps as two separate modalities. We clip the relative
depths to 200 units and linearly scale them into a O to 1 range.

ETH3D [15] We clip the depths to 50m and otherwise use them
as provided by the authors.

KITTTI [5] We only use the subset of the KITTI dataset with
registered depths, without any additional modalities. We clip
the distances to 20km and follow by linearly scaling them into
a 0to 1 interval.

Geopose3K [1] We use both the provided renders and photos
as separate input modalities. Since the depths are synthetic
and miss many of the details, we generate automatically gen-
erate masks and train only the regions covered purely by the

terrain. The masks are generated by using a combination of
DeepLabv3 [16] segmentation along with further processing
and filtering to ensure that only reliable data is used for train-
ing. We also use the negative depth values, which signify the
sky, to enhance our training masks. To better work with the
large ranges of depth, we use non-linear scaling, similar to a

z-buffer:
farnear

dd) = near + d(far — near)’

where d is the linear depth, z is the non-linear logarithmic depth,
and we set near = 0 and far = 250km to cover the values
present in the dataset. Depth values outside of this range are
clipped.

LandscapeAR [2] We perform similar processing as in the case
of Geopose3K. We choose a smaller subset of valid segmenta-
tion classes to ensure the quality of the training data. For the
depth, we again use the non-linear scaling as presented above,
setting near = 0 and far = 300km to better cover this dataset’s
increased range.

3. Implementation, Experiments and Results

We base our quantitative analysis of the performance on the
following commonly accepted evaluation metrics [[17, |18, [19]:

1 N
RMS = 1 ﬁ;nd,-—dqz, (1)

1< Jdi - dj]
REL = — 2
I Zl T )
1 N
Logl0 = |logio(d:) — logio(d)), 3)
i=1
di d
O > thr : % of d; such that max 7 > thr, (@)
1 A
WHDR = = > wi(ly; # Ty, )

ij 77

where d; is the ground-truth depth, d; is the predicted depth,
and N is the size of the test set. For the WHDR [18]], we set the
weights w;; to 1 for all annotations ¢;;.

We provide additional metrics calculated for the Geo-
pose3K [[1] and LandscapeAR [2] datasets in Tab. E} Additional
example pairs of input RGB and depths predicted by the ViUT
can be seen in Fig.
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Fig. 1: Depth Predictions: Examples of depth maps predicted by the ViUT model. The images contain the input RGB image, visualized ground-truth depth, and a
visualization of the predicted depth.
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