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Abstract

Camera orientation estimation in natural scenes has re-
cently been approached by several methods, which rely
mainly on matching a single modality – edges or horizon
lines with 3D digital elevation models. In contrast to pre-
vious works, our new image to model matching scheme is
based on a fusion of multiple modalities and is designed to
be naturally extensible with different cues. In this paper,
we use semantic segments and edges. To our knowledge, we
are the first to consider using semantic segments jointly with
edges for alignment with digital elevation model. We show
that high-level features, such as semantic segments, com-
plement the low-level edge information and together help to
estimate the camera orientation more robustly compared to
methods relying solely on edges or horizon lines. In a se-
ries of experiments, we show that segment boundaries tend
to be imprecise and important information for matching is
encoded in the segment area and a coarse shape. Intuitively,
semantic segments encode low frequency information as op-
posed to edges, which encode high frequencies. Our exper-
iments exhibit that semantic segments and edges are com-
plementary, improving camera orientation estimation relia-
bility when used together. We demonstrate that our method
combining semantic and edge features is able to reach state-
of-the-art performance on three datasets.

1. Introduction

Camera orientation estimation has recently been ap-
proached by a variety of works [25, 24, 7, 18, 6, 27, 26, 13].
With the knowledge of orientation and position of camera in
the world, we can infer answers to questions such as: “Is it
possible to move forward?”, or “What are we looking at?”
While state-of-the-art data-driven methods [17, 2] can an-
swer such questions, they are focused mainly on urban ar-
eas. In contrast, this work focuses on camera orientation
estimation in mountainous areas, which are important as
well. Knowledge of camera orientation may be valuable for
scene understanding and organizing large databases of pho-
tographs. Furthermore, camera orientation may augment
other sensors in robots, UAV’s or helicopters for automatic
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Figure 1. Overview of the proposed method. (a) Synthetic se-
mantic segments are rendered using terrain model and geospatial
database. (b) Query image is segmented via semantic segmenta-
tion method. (c) Semantic segments from query image are aligned
with synthetic semantic segments and camera orientation (α, β, γ)
is recovered.

navigation. Several works on camera orientation estimation
in mountainous areas were developed recently [7, 6, 26].
However, the problem still remains challenging for real
world images as illustrated by our experiments.

Evolution of handheld devices brought the possibility to
recover orientation from inertial sensors. However, such
orientation is usually inaccurate and vulnerable to drift.
Camera position, on the other hand, is often stored more
accurately as a GPS coordinate. Similarly, the majority of
images and videos on the internet contain no information
about camera orientation. The knowledge of accurate cam-
era orientation opens up interesting applications and facil-
itates difficult image recognition tasks. For example, im-
ages with known camera pose can be augmented with infor-
mation from geospatial databases and used in augmented
and virtual reality applications. Existing solutions to cam-
era orientation estimation in mountainous scenes rely on
matching a query image with a terrain model [7, 6, 26]. In
general, these methods are based on aligning query image
features (edge maps) with synthetic edges generated from
the terrain model. While we also use a terrain model as
a reference, we do not rely solely on the edge information.
In contrast to previous works, we align areal features which
complement edge information. Specifically, development
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of semantic segmentation allows us to employ matching
based on semantic segments. We map terrain features, such
as forests, bodies of water, and glaciers from a geospatial
(GIS) database to a digital elevation model (DEM) and ren-
der into a panorama image containing semantic segments
(Fig. 1(a)). From the query image, we extract semantic seg-
ments (Fig. 1(b)) using recent semantic segmentation meth-
ods [20, 22, 11]. To estimate camera orientation, we match
the query and the panorama (Fig. 1(c)). We estimate a cor-
respondence between the query image and the synthetic
panorama based on similarity of semantic segments of the
same class. Intuitively, spatial relationships between differ-
ent semantic classes disambiguate in-plane rotations. In or-
der to exploit these spatial relationships, we introduce confi-
dence fusion (CF), which prefers camera orientations with
highest confidence agreement across all semantic classes.
The benefit of the proposed technique is the possibility to
naturally fuse confidence estimates of different modalities,
such as different segment classes and edge maps.

Contributions We propose a novel method for aligning
a single image to a digital terrain model. To our knowledge,
we are the first to consider joint combination of semantic
segments and edges to match an image with a rendered
panorama of the terrain. We train semantic segmentation
on a synthetically rendered dataset and show that synthetic
data is needed to achieve reasonable accuracies when used
for orientation estimation in mountainous environment. To
enable matching of several semantic segment classes and an
edge map with the rendered panorama, we propose a novel
confidence fusion (CF) method which fuses individual be-
liefs together to achieve better accuracy. Our experiments
show that the proposed method outperforms state-of-the-
art on publicly available test sets – GeoPose3K [9], Venturi
Mountain dataset [26], and CH1 dataset [29].

2. Related work
Explosion of publicly available photographic data in re-

cent years allowed researchers to develop data-driven cam-
era pose estimation methods, especially using Structure-
from-Motion (SfM) techniques [16, 21, 31, 23, 17]. Un-
fortunately, such methods require an abundance of overlap-
ping images to compute camera pose making them difficult
to use in the natural environment, where the image cov-
erage is still sparse. Another problem for natural scenes
resides in the difficulty of finding stable key-points under
changing appearance – illumination, weather, seasons, veg-
etation, etc.

Works dealing with natural scenes have shown that the
horizon line is an important and relatively stable feature for
camera orientation and position estimation [15, 32, 12, 29].
However, relying solely on the horizon line can be mislead-
ing, since there are many situations, when the horizon line is

ill-defined, non-descriptive or completely invisible: (i) view
from an elevated place to a flat landscape implies a flat hori-
zon line, (ii) horizon line is contaminated with foreground
objects, like trees, (iii) horizon line is not visible due to cam-
era pitch (images without the sky).

Recent works dealing with the camera orientation es-
timation with fixed position for outdoor and mountainous
scenes are based on alignment of a query image with a ter-
rain model [8, 7, 28, 6, 26]. For alignment, edge maps were
used by Baboud et al. [7] and Porzi et al. [26]. Produit et al.
[28] used pixel patches located at corners of salient edges.
Most closely to our work, Baatz et al. [6] used semantic
segments for the image alignment. They extracted binary
descriptors capturing the spatial relationships between dif-
ferent classes of segments. However, the descriptors encode
local changes between neighboring segments, meaning that
only segment boundaries are exploited by this technique.
The boundaries are usually inaccurate for real world cases
(see Fig. 1(b)), rendering the method unstable. To address
this issue, we propose areal matching of semantic segments.
The main idea is that segment areas should match well, un-
like segment boundaries which are potentially wrong.

Several approaches for camera position and orientation
estimation based on semantic segments were also developed
for urban environments. Senlet et al. [30] and Castaldo et
al. [10] used semantic segments for matching an input im-
age with a GIS map to estimate a camera position, but their
approach is unable to recover the camera orientation pre-
cisely. Ardeshir et al. [3], on the other hand, used estimated
superpixels and semantic segments projected from a GIS
database to infer a geo-semantic segmentation. Their iter-
ative algorithm fine-tunes the camera position and orienta-
tion, and produces semantic segmentation based on projec-
tions from the GIS database. Their work assumes matching
buildings with known height, which reduces description of
segment areas to two points (leftmost and rightmost). This
renders the method inappropriate for natural scenes, where
the segment shapes are more complicated and cannot be
simplified in this way. Armagan et al. [4] proposed an it-
erative approach to fine-tune camera position and orienta-
tion based on semantic segmentation with known camera
position and orientation estimate. In contrast to their work,
our approach is more general as it does not need any initial
camera orientation estimate.

3. Orientation estimation using semantic cues
For a given query image, our aim is to estimate its cam-

era orientation using a digital terrain model. The basic idea
is to project the query image onto the sphere and align it
with the spherical panorama rendered from the model. The
correct alignment then defines the searched camera orien-
tation. We assume that the position λ (latitude, longitude,
elevation) and the horizontal field-of-view pf of the query
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Figure 2. Illustration of the cross-correlation behavior for two
functions pk > 0 and fk > 0, which are, without loss of general-
ity, defined on R2 for this example. White color denotes ε → 0+,
darker color denotes a higher value. In the first line, the cross-
correlation is maximized even for translations, where surround-
ings of the pattern are not in agreement with the signal. The in-
verted pattern and signal on the second line create a complemen-
tary cross-correlation map. When the two cross-correlations are
combined, the maximum value is correctly in place where both
the pattern and its surroundings overlap the largest areas.

image p are known. The goal is to find a rotation g ∈ SO(3)
of the camera frame with respect to the frame of the digi-
tal terrain f . The terrain model is rendered with synthetic
semantic segments as a spherical 360° × 180° panorama
(see Fig. 1(a)), with λ as the unit sphere center. A projec-
tive query image containing estimated semantic segments is
projected on the unit sphere as well. The query image is
scaled to cover the part of the unit sphere corresponding to
its field-of-view. The image is scaled by a factor sq =

pf
2πwq

,
where wq is the width of the query image.

3.1. Cross-correlation as a measure of confidence

To estimate the camera orientation g = (α, β, γ), we
compute a matching confidenceC(α, β, γ) over all possible
combinations of rotations α ∈ 〈0°, 360°〉, β ∈ 〈0°, 180°〉,
γ ∈ 〈0°, 360°〉 (see Fig. 1(a) for respective rotations). We
also define a confidence Ck > 0 for semantic segment
class k and later fuse all confidences into the total con-
fidence C. The combination of parameters maximizing
the total confidence defines the camera orientation estimate
g = argmaxα,β,γ(C(α, β, γ)).

We propose the confidence Ck to be a cross-correlation
of the query and panorama on SO(3), both containing se-
mantic segments of class k. Similarly to Baboud et al. [7],
we exploit the cross-correlation theorem for efficient com-
putation of cross-correlation in the Fourier domain. Cross-
correlation of two real valued functions f and p on SO(3)
is similar to ordinary 2D cross-correlation, but we are inte-
grating over all positions on a sphere (S2):

∀g ∈ SO(3) : f ? p(g) =

∫
S2

f(ω)p(g−1ω)dω. (1)

For each class k, we construct two spherical functions pk
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Figure 3. Two-pass cross-correlation is not equivalent to a single-
pass using negative values. Our two-pass approach calculates
number of correct pixels and disregards the wrong pixels if both
foreground and background is matched. In contrast, the single-
pass penalizes the wrong pixels, which leads to result incompatible
with our definition of confidence.

(query segments) and fk (synthetic segments) as follows.
In order to obtain strictly positive confidence, we need the
spherical functions to be strictly positive as well. We sam-
ple both query segments and synthetic segments of class
k on a unit sphere, where 1 is assigned to pixels contain-
ing the segment of class k and ε → 0+ to pixels that
contain other segment classes, where ε is a small positive
constant. However, calculating cross-correlation for a sin-
gle segment class k using pk and fk may not be sufficient
for correct alignment (see the top line in Fig. 2). In this
case, the cross-correlation is maximized for all rotations,
where pk(g) ≤ fk. This way, segments from the query
image tend to “hide” inside larger synthetic segments of
the panorama image. In other words, there are large ar-
eas with the maximum cross-correlation value. To allevi-
ate this problem, we divide the computation of class con-
fidence Ck into two steps that are combined together, as
illustrated in Fig. 2. The first step is the cross correlation
∀g ∈ SO(3) : fk ? pk(g), given the class k. The sec-
ond step is a complementary cross correlation with inverted
spherical functions f ′k = 1 + ε − fk, p′k = 1 + ε − pk.
The combined cross-correlation, which equals to class con-
fidenceCk across all rotations g ∈ SO(3) is then calculated
as:

∀g ∈ SO(3) : Ck(g) = (fk ? pk(g))(f
′
k ? pk(g)

′). (2)

Intuitively, the first cross-correlation maximizes rotations
where query segments overlap the synthetic segments,
while the second cross-correlation maximizes rotations
where the surroundings of query segments overlap the sur-
roundings of the synthetic segments. By multiplying the
two cross-correlation results, we robustly enforce rotations
where overlap of both the segment area and its surroundings
are maximized.

Please note, that the two-step cross-correlation is neces-
sary and cannot be replaced by 1 and -1 encoding for the
segment and the background, respectively. Consider the
situation in Fig. 3, where our two-step correlation is com-
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Figure 4. Synthetic experiment illustrating the confidence fusion.
Cross-correlations are visualized as a heatmap over orientations
(α, β, γ), which form a cube. The query image contains two cir-
cles, each circle represents one semantic segment (classes of the
segments are different). In this case, cross-correlation of a sin-
gle segment class does not disambiguate the roll angle (γ). On
contrary, the fusion of confidence maps maximizes at a single ori-
entation, as visualized in the rightmost cube.

pared to a single-step version. The leftmost pixel is match-
ing background, the second pixel is matching foreground,
and two pixels on the right do not match (background on
foreground). Since two of four pixels match foreground or
background, we expect the confidence to be greater than ε.
Our two-step approach maximizes correct overlap of seg-
ments (and returns 1) while the single-step method is biased
by non-matching regions (and returns 0).

3.2. Confidence fusion

So far we have considered confidence of a single seg-
ment class. A single segment class k is usually not suffi-
ciently descriptive to constrain the correct rotation, since the
semantic segment areas are often similar to each other for
many rotations. Mutual spatial relationships between dif-
ferent segment classes help to disambiguate the correct ro-
tation. While a single segment class does not disambiguate
the roll angle (see Fig. 4), the combination of two segments,
gives a single precise maximum, which is located at the de-
sired rotation (see Fig. 4, combined C).

With the assumption that the segments are correctly de-
tected in the query image and no segments are missing from
the rendered panorama, the correct rotation would be deter-
mined by the highest confidence across all fused classes.
To calculate it, we would simply calculate the product of
confidences across all classes:

∀g ∈ SO(3) : C(g) =
∏
k

(Ck(g)). (3)

However, the assumption of correct detection and complete
model cannot be fully satisfied in real-world applications.
In this case, the wrongly detected segment could cause drift
from the correct solution. To be able to compensate mis-

takes in the detection or missing parts in the model, we pro-
pose to compute the Confidence Fusion (CF framework) as
a weighted geometric mean:

∀g ∈ SO(3) : C(g) =
∏
k

(Ck(g))
wk . (4)

The importance of the segment class k can now be tuned
by the weight wk ∈ 〈0, 1〉: the weight should be small for
wrongly detected segment classes and high for classes that
are detected and rendered correctly.

The weights can be estimated in many ways. We tried
to regress them directly based on the GeoPose3K training
set, but this approach has not proved to be robust across
different datasets. The robust estimation of the weights for
fusion of multiple densities can be borrowed from Ajgl and
Šimandl [1] (Theorem 2), where the authors derive the com-
putation of weights in the sense of minimization of maximal
Kullback-Leibler divergence between the fused confidence
C and the class confidences Ck. The method needs to be
used carefully in order to keep the computational complex-
ity reasonably low and to allow suppression of wrongly de-
tected class confidences (supplementary material, Sec. 1).

Moreover, expensive calculation of weights can be
avoided completely. We observed, that class confidences
Ck are potentially incorrect for segments covering small ar-
eas, as small segments may be often mis-detected, or oc-
cluded. We solved this problem by setting the weights
empirically. If the area covered by the segment class k
in the query or panorama image is lower than a thresh-
old t1, we simply turn off the segment class k by setting
its value wk = 0. For remaining segment classes, we set
wk = 1. This simple approach significantly outperforms
non-weighted fusion (eq. 3) and provides comparable re-
sults to the approach of Ajgl and Šimandl [1] in our appli-
cation.

Semantic segments and edge features. Our Confidence
Fusion framework (CF, eq. 4) is in fact able to use any non-
negative result based on spherical cross-correlation, it is not
limited to semantic segments only. Majority of methods
employs edge features for matching real image with a ter-
rain model [7, 5, 29, 32, 12, 14]. Our goal is to show that
it is highly beneficial to combine edge features with other
cues, such as the semantic segments. To detect edges, we
use edge detector trained to estimate silhouette edges simi-
lar to the rendered ones [9]. To calculate confidence based
on edge features, we use cross correlation metric developed
exclusively for edges, VCC-2011 [7], for which we replace
negative values with ε→ 0+.

3.3. Semantic segmentation

For the task of matching a query image with rendered
semantic segments, we need a segmentation method to es-

1We use t = 0.1% of the total image area (found experimentally).
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DeepLab-v2
VGG16

DeepLab-v2
VGG16 + CRF

FCN8s
SiftFlow

FCN8s
Pascal-Context ALE Naive baseline

mACC 0.63 0.62 0.59 0.54 0.61 0.20
mIU 0.53 0.52 0.46 0.38 0.46 0.07

IU ACC IU ACC IU ACC IU ACC IU ACC IU ACC
mountain 0.60 0.78 0.60 0.79 0.56 0.77 0.44 0.60 0.49 0.60 0.00 0.00
sky 0.89 0.93 0.89 0.93 0.89 0.93 0.82 0.89 0.79 0.91 0.35 1.00
forest 0.38 0.53 0.37 0.52 0.34 0.48 0.32 0.57 0.33 0.56 0.00 0.00
water 0.44 0.55 0.44 0.54 0.31 0.51 0.17 0.43 0.30 0.47 0.00 0.00
glacier 0.36 0.37 0.31 0.32 0.21 0.24 0.14 0.19 0.40 0.49 0.00 0.00

Table 1. Results of semantic segmentation methods trained with GeoPose3K. Results are measured on GeoPose3K test set; accuracy (ACC)
and intersection over union (IU) are measured per class independently, mean pixel accuracy over all classes is denoted by mACC, and mean
intersection over union over all classes is denoted as mIU. Last column represents a naive segmentation into a single class (sky), which has
the largest prior probability in the GeoPose3K dataset.

timate semantic segments which are visually similar to the
rendered counterparts. To achieve this, we fine-tune several
state-of-the-art semantic segmentation models. Please note,
that the fine-tuning using the synthetic dataset is a crucial
step in the whole CF framework and it is one of the contri-
butions of this paper.

We consider two state-of-the-art convolutional neural
network (CNN) architectures: FCN [22] and Deeplabv2-
VGG-16 [11], and one non-CNN method which is used as
a reference: Automatic Labeling Environment [20]. We
start with SiftFlow and Pascal-Context models for FCN8s,
and similarly for training DeepLab-v2, we use VGG-16 as
an initial model. All models were fine-tuned on GeoPose3K
dataset [9], which contains synthetic semantic labels for
more than 3K images registered into the 3D terrain model.
We split GeoPose3K into train (1927 images), validation
(472 images), and test sets (516 images), so that these three
sets are geographically disjoint (see supplementary mate-
rial Fig. 1). This way we ensure, there are no similar im-
ages across the train, validation and test sets. Furthermore,
we optimize the geographical distribution of images so that
the sets contain similar amount of semantic segments per
class (measured in pixels). The train/validation/test splits
are available in the supplementary material.

The GeoPose3K dataset contains in total 14 classes for
semantic segmentation, including sky. Unfortunately, many
segment classes, such as sinkhole or bare-rock are avail-
able only for a limited subset of images. Segments of these
classes often span a small area of the image which reduces
their descriptivity. Motivated by this observation, we se-
lected the following subset of semantic segment classes,
which cover a sufficient number of images: mountain, sky,
forest, bodies of water, and glacier. To fine-tune these
classes using FCN8s and DeepLab-v2, we replaced the last
classification neural network layer with a layer containing
our own 5 classes.

4. Experiments

In this section we provide an in-depth evaluation of the
proposed camera orientation estimation. For evaluation,

we used three publicly available data sets – GeoPose3K
test set (516 test photos), CH1 dataset (203 photos) [29],
and Venturi Mountain Dataset [26] (12 videos). The orig-
inal CH1 dataset [29] does not contain camera orientation
ground truths. However, the GeoPose3K contains images
from CH1 dataset and provides camera orientation ground
truth [9]. As well as the CH1 dataset, we held out the
GeoPose3K test set and Venturi dataset from semantic seg-
mentation training, and used it only for testing. The pre-
sented evaluation is by far the largest analysis of methods
dealing with camera orientation estimation in natural envi-
ronment without any help of device sensors (compass, ac-
celerometer, gyroscope). We compare our work directly
with Baboud et al. [7], Porzi et al. [26], and our imple-
mentation of Saurer et al. [29]. Since Baatz et al. [6] and
previous methods [25, 24, 28] use rather a limited number
of private images for their evaluation, we were unable to
establish direct comparison with these methods.

Evaluation metric. To be able to compare our approach
with the recent work of Porzi et al. [26], we are evaluating
the estimated camera orientation accuracy using the same
orientation estimation error defined as:

e(Rgt,Rc) = arccos

(
tr
[
Rᵀ
gtRc

]
− 1

2

)
, (5)

where Rgt is the ground truth camera rotation matrix and
Rc is the estimated rotation matrix. This metric calculates
the magnitude of the smallest rotation between the ground
truth and the estimated rotation. We calculate and plot a cu-
mulative distribution of the orientation error, where certain
fractions of images have the orientation error equal or lower
than given threshold. A random baseline illustrates what is
the probability of guessing an orientation. For better clarity,
we also give a measure of Area Under Curve (AUC), where
AUC = 1 is in theory the best possible result.

4.1. Evaluation of semantic segmentation methods

We select a semantic segmentation method for our orien-
tation estimation framework using standard semantic seg-
mentation metrics, namely mean accuracy and mean Inter-
section over Union (mIU). These metrics, shown in Tab. 1,
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Figure 5. Performance of CF framework
with different segmentation methods. The
best – Deeplab with CRF (AUC: 0.71); other
methods scored similarly (AUC: 0.70).
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Figure 6. Comparison our CF framework
using semantic segments with edge-based
VCC-2011 [7] on high (solid curves) and
low (dashed curves) resolutions.
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Figure 7. Original semantic segments were
smoothed by gaussian blur using three dif-
ferent kernel radii 10 px (b10), 15 px (b15)
and 20 px (b20).

illustrate, that both Deeplab with and without Conditional
Random Fields (CRF) are the methods of choice. Since the
metrics are based on the ratio of correctly classified pixels,
we expect that the best method based on these metrics is
also the best for our camera orientation estimation frame-
work. This expectation was verified by testing our orienta-
tion estimation framework with the semantic segmentation
methods listed in Tab. 1. The results of this experiment are
shown in Fig. 5. The best result was achieved by Deeplab
with CRF (Deeplab-seg-crf, AUC: 0.71), but other segmen-
tation methods – Deeplab without CRF, FCN8s, and ALE
scored almost the same (AUC: 0.70). According to visual
inspection, CNNs are slightly more successful in ignoring
objects not present in the digital terrain model (see supple-
mentary material, Fig. 2(f) vs. Fig. 2(g)). We use DeepLab
for all following experiments with our Confidence Fusion
(CF) framework.

4.2. The impact of cross-correlation resolution

For calculating cross-correlation in SO(3) using Fourier
transform (FFT), we use publicly available SOFT pack-
age [19]. Precision of the cross-correlation as well as com-
putation time and memory footprint are driven by two fac-
tors – the input resolution of the spherical functions and res-
olution of the cross-correlation output. Higher input resolu-
tion implies more precise sampling of input spherical func-
tions. Resolution of the output drives sampling of the re-
sulting cross correlation. Please, note that lower input and
output resolutions do not restrict the search space to any par-
ticular orientation – full 3D rotation is searched no matter
what resolutions are selected.

In general, it is expected that lower resolution (coarser
sampling) of the functions would decrease the precision of
the method. Intuitively, coarser sampling might negatively
affect high-frequency functions more than low-frequency
functions. Semantic segments encode low frequency infor-
mation, while edge features encode mainly high frequen-
cies. According to this observation, we expect that us-

ing lower input and output resolution affects the precision
of cross-correlation of semantic segments much less than
cross-correlation of edges. To verify this hypothesis, we
run an experiment to compare the effect of input and out-
put resolutions on the achieved accuracy (see Fig. 6). We
consider two versions of input and output resolution. The
first version is a low resolution, with input resolution of
1024 samples and the output resolution of 128 samples (see
dashed curves in Fig. 6). Low resolution yields fast evalu-
ation (about 1.5 second per cross-correlation) and the ori-
entation estimation of a single query lasts at most 30 sec-
onds (depending on the number of segment classes). How-
ever, the result confidence is stored in a cube of size (128)3,
yielding almost 3° per bin, which may increase the orien-
tation error. The second version is a high resolution one,
where the input resolution is set to 4096 and the output
to 512 samples (see solid curves in Fig. 6). The experi-
ment confirmed our expectation, that using lower resolution
for cross-correlating semantic segments does not increase
the orientation error dramatically (see cyan solid, vs. cyan
dashed curve in Fig. 6). Using lower resolution the time and
memory footprint is reduced extensively (from 45 seconds
per cross-correlation to just 1.5 second, and from 12GB of
memory to just 247MB on high and low resolution, respec-
tively). Compared to semantic segments, the edges contain
higher frequencies, which are more affected by subsam-
pling. In the case of edge-based cross-correlation (VCC-
2011 [7]), the high resolution variant brings a decent im-
provement in terms of accuracy over the low resolution (see
Fig. 6 red solid vs. red dashed curve). This result is in
agreement with our expectations as well. The relative indif-
ference to subsampling is an advantage of using segments
over the edges.

4.3. Importance of segment boundaries

To ensure that our approach factually does not boil down
to matching boundary edges of semantic segments, we con-
ducted an experiment in which we suppressed the impor-
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Figure 8. Comparison of the edge-based
VCC-2011 [7], our CF framework using se-
mantic segments, and combination of both
approaches. We use our CF framework
to fuse semantic segments and edges (CF-
VCC-2011), which gives the best result.
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Figure 9. Our CF compared to HLoc [29]
on GeoPose3K test set. CF (blue) using au-
tomatic segmentation and HLoc using syn-
thetic sky segmentation (dashed) perform
similarly; HLoc using automatic sky seg-
mentation (green) performs worse.
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Figure 10. Results on CH1 dataset. Our
CF framework using automatic segments +
edges has superior accuracy compared to
HLoc with original, manually refined hori-
zon line from CH1 dataset (HLoc-CH1).

tance of segment boundaries by gaussian blur. We blurred
the original query and synthetic segments with three dif-
ferent kernel radii – 10 px (0.43°), 15 px (0.65°) and 20 px
(0.86°). This removes hard boundaries of semantic seg-
ments and reduces their impact. Since the boundaries of
segment areas tend to be imprecise, we expect that sup-
pressing their importance should not negatively affect the
result. The achieved performance is shown in Fig. 7. The
best performance was achieved using non-blurred and 10 px
kernel radius (AUC: 0.70). For larger kernel radii the accu-
racy dropped only slightly, having AUC: 0.69 and 0.68 in
case of 15 px and 20 px radius, respectively. We see that the
blur does not affect the results significantly. This illustrates
that potentially inaccurate segment boundaries are not very
informative for camera orientation estimation using our CF
method and the main information resides in segment areas
and coarse shapes.

4.4. Are edges and semantic areas complementary?

The previous experiment suggests that segment areas en-
code the main information unlike the segment boundaries.
Intuitively, segment areas correspond to low-frequency in-
formation, while edge features encode high-frequencies.
This property should allow combining both types of fea-
tures to increase orientation estimation accuracy. We calcu-
late two confidences: one using VCC-2011, and the second
one using semantic segments. The final result is obtained by
fusion of both confidences with our CF framework. Since
VCC-2011 penalizes query and silhouette edge crossings,
the result of VCC-2011 may contain negative values. To be
able to use the VCC-2011 result in our CF framework, we
clamp negative values with ε→ 0+ before fusion.

Our expectation that the combination of edges and seg-
ments improves the orientation estimation result was con-
firmed in the following experiment. We used the Geo-
Pose3K test set to measure the orientation error of VCC-

2011 [7] (Fig. 8 – red curve, AUC: 0.52). Cyan curve in
Fig. 8 denotes the result obtained by our CF framework
using semantic segments only – AUC: 0.70. We can see
that our method using semantic segments yields better per-
formance, than edge-based VCC-2011. The combination
of both (VCC-2011 and segments) using our CF frame-
work, scored the best performance – (Fig. 8 – blue curve,
AUC: 0.78). The difference between using edges and se-
mantic segments is 18%. Furthermore, the combined re-
sult brings improvement of 26% over the VCC-2011. Sim-
ilar results were recorded also on the Venturi Mountain
dataset [26], and the CH1 dataset [29], but were omitted for
the sake of readability from the main paper (see Fig. 3 and
Tab. 1 in the supplementary material). We conclude, that ac-
cording to this experiment, the semantic and edge features
are complementary. Combining both approaches improves
the camera orientation performance significantly.

4.5. Comparison with state-of-the-art

This section presents series of experiments showing, that
our CF framework produces more accurate results than ex-
isting state-of-the-art methods. With personal advice of
the authors, we have reimplemented a horizon line-based
localization method (abbreviated as HLoc2) by Saurer et
al. [29] into the same DEM rendering pipeline as CF, and
evaluated its ability to find correct camera orientation with
known camera position. We used the best dir&loc [29]
scheme to calculate a heading estimate of a given query
and a panorama horizon line, followed by Iterative Closest
Points (ICP) to obtain the full 3D camera rotation.

We report the results on GeoPose3K test set (Fig. 9),
CH1 dataset [5] (Fig. 10), and Venturi Mountain
dataset [26] (Tab. 2). First, we provide an upper bound

2The source code and experiment data are available at:
http://cphoto.fit.vutbr.cz/semantic-orientation.
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Resolution Method Avg. mean Avg. stddev F1 F2 F3 F4 F5 F6 J1 J2 J3 J4 J5 J6

low
CF-VCC-2011-m3D (ours) 5.93 21.82 1.82 3.50 30.26 4.15 13.92 4.02 3.51 1.20 1.31 1.20 5.93 2.41
VCC-2011-m3D 21.06 44.20 1.00 6.01 21.27 116.87 41.30 1.69 132.92 0.71 0.55 1.20 41.04 4.46
CF-VCC-2011 (ours) 34.19 41.75 6.67 5.00 100.11 132.06 51.42 39.95 7.41 6.75 23.87 8.85 55.39 19.01

high
CF-VCC-2011-m3D (ours) 1.92 10.62 2.57 3.68 1.06 1.57 2.68 0.61 4.54 1.26 0.50 1.18 5.24 0.47
VCC-2011-m3D 2.88 14.72 1.49 8.94 1.27 6.25 4.42 1.18 5.17 1.08 0.50 1.18 6.29 0.66
CF-VCC-2011 (ours) 12.42 32.44 0.93 0.67 85.68 1.09 21.18 2.45 1.85 0.93 8.32 1.42 41.65 0.75

- HLoc-synthetic 28.0 50.54 52.73 1.84 11.54 36.08 4.17 10.21 115.54 86.08 6.01 4.11 3.84 40.85
- HLoc-Deeplab 98.76 61.24 133.69 47.52 85.66 128.47 54.48 120.4 115.23 134.89 28.61 100.1 57.67 155.35
- RFNh −HOR [26] 1.23 1.24 - - - - - - - - - - - -
- SENSORS [26] 9.43 4.16 - - - - - - - - - - - -

Table 2. Mean orientation error (in degrees) of the proposed method and its variants on Venturi Mountain dataset (video sequences F1 –
F6, and J1 – J6). The last two rows refer to the reference results obtained with the help of device inertial sensors by Porzi et al. [26].

of our HLoc implementation. We measure results with hori-
zon line rendered from the DEM with perspective projection
(HLoc-synthetic). Second, we measure HLoc performance
on queries with automatically segmented sky class using
Deeplab (HLoc-Deeplab). Third, on the CH1 dataset, we
use queries from the original publication [29], segmented
with the help of the user (HLoc-CH1). According to our ex-
periments, HLoc is fairly sensitive to the quality of the seg-
mentation – HLoc-Deeplab provides poor results compared
to the HLoc-synthetic, and HLoc-CH1. Performance of our
CF framework is similar to HLoc-synthetic and is higher by
a large margin compared to HLoc-CH1. Please note that our
CF framework uses only automatically detected segments
and edges. Compared to the HLoc-Deeplab, it scored sig-
nificantly better on all three datasets. We conclude, that the
HLoc method depends on fine-grained horizon line segmen-
tation and it is not suitable for a fully automatic process-
ing. Our CF framework is much more robust to impreci-
sions in feature detection, and achieves significantly better
results compared to HLoc for automatically detected seg-
ment classes.

We further compare our method with Robust silhouette
map matching metric (m3D-2011) by Baboud et al. [7].
This non-linear metric penalizes crossings of query edges
with synthetic depth discontinuities. The metric is fairly ac-
curate, however, it needs a reasonably small subset of candi-
date rotations since its computation time is enormous (hours
per query on the whole SO(3)). One can look at this metric
as a geometric verification step; once the subset of candi-
date rotations is known, we can use this metric to verify and
re-rank the best candidates. Tab. 2 illustrates, that our CF-
VCC-2011 framework (segments + edges) already outper-
forms more complex Robust silhouette map matching met-
ric (VCC-2011-m3D) on several Venturi sequences (F1, F2,
F4, J1, and J2) on high resolution. On the other hand, the
mean error of our method is considerably higher than VCC-
2011-m3D for the sequences F3, F5, and J5. These se-
quences are sparsely populated with synthetic semantic seg-
ment descriptions, which is attributed to the inaccuracy of
the GIS database (OpenStreetMap). Additionally, in these
sequences the horizon line is often straight, which rapidly
reduces its descriptivity.

However, when we use CF-VCC-2011 as an initial
estimate (search space reduction) for m3D-2011 [7], we
improve the state-of-the-art result of m3D-2011, since it
searches through the smaller number of outlier candidates.
Considerable improvement has been achieved especially at
the low resolution. The combination of m3D-2011 and
our CF method (CF-VCC-2011-m3D) achieves mean er-
ror of 5.93°, which is smaller by more than 70% com-
pared to the original VCC-2011-m3D method (see Tab. 2,
CF-VCC-2011-m3D vs. VCC-2011-m3D). This is an im-
portant result, since the proposed method is fast on low
resolution (seconds per query). The most accurate result
(1.92°) was achived by CF-VCC-2011-m3D at high reso-
lution. The improvement over the original method VCC-
2011-m3D (2.88°) is 33%.

5. Conclusion
We proposed a novel method for camera orientation es-

timation in natural scenes, which is based on semantic seg-
mentation cues. To extract semantic segments from the
query image, we utilized three state-of-the-art semantic seg-
mentation methods and evaluated their suitability for the
orientation estimation task. We used an extensive synthetic
dataset GeoPose3K to train the methods for extraction of
natural segments like forested areas, bodies of water, sky
segments or glaciers.

Our experiments indicate that boundaries of semantic
segments are less informative than their areas which are
therefore complementing the information stored in edge
maps. Using the proposed confidence-based fusion frame-
work we measured that semantic segments are more infor-
mative than edges. However, as the edges add complemen-
tary information to the estimation process, the combination
of semantic segments and edges achieves the state-of-the-art
result in camera orientation estimation on natural scenes.
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[26] L. Porzi, S. R. Bulò, O. Lanz, P. Valigi, and E. Ricci. An
automatic image-to-DEM alignment approach for annotating
mountains pictures on a smartphone. Machine Vision and
Applications, pages 1–15, 2016.
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