
Game Engine
Architecture, Game Loop, Unity 3Tomáš Polášek ipolasek@fit.vutbr.cz

Brno University of Technology

Faculty of Information Technology
DCGM, CPhoto@FIT
Faculty of Fine Arts
Game Media Studio

mailto:ipolasek@fit.vutbr.cz


What is a Game Engine?

Reusable Software Ñ Platform
Goal: Simplify Game Development
There is OneThere are Many
Build Your Own?
“Choosing the Right Tool for the Job”

§ Licensing & Royalties
§ Internal tools
§ Ecosystem Integration
§ Target Platform
§ Game Genre, Style, Gameplay
§ Community

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 1 / 32



Game Engine Software

“Fun Activity” vs “Soft Real-Time Simulation”
Game Engine = Runtime + Tools
Gamut of Reusability
Generality ˆ Optimality

The Engine

Runtime

Tools

Dev
Runtime

Logic
The Game

Single
Game

Similar
Games

Single
Genre

Any
Genre

Tetris Doom Engine id Tech 3
Unity 

Unreal Engine 4
Source: Game Engine Architecture [1]

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 2 / 32



Engine Architecture



Game Engine Overview

Complex Software Architecture 1

Layers & Dependencies
System Overview

Operating
System

Hardware

Drivers

Low-Level SDK
Platform Independence

Core Systems

Resource ManagementTools

l3

l8

Render l7

Scene l4

HID l5 Physics l6Debug l4

Animation l9Network l4 Audio l11

Front End l10 Gameplay, Scripting, Flow l12l3 l4

Game-Specific Systems & Logic l12

1Jason Gregory – Game Engine Architecture [1]
rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 3 / 32



Hardware & OS

Architecture, Optimization
Varied Ñ Uniform
Operating System = Software Layer
Drivers = Hardware Interface Hardware

CPU
Acceleration

Memory
Storage

GPU

Operating System Drivers
Resources

Scheduling Processes
Security

Source: Xbox 2001, Xbox Series S 2020

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 4 / 32



Low-Level Libraries

APIs, SDKs, Standard Library, ... Low-Level Libraries
SDKsMiddleware APIs

Source: XKCD – Standards

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 5 / 32



Platform Independence Layer

Platform Independence
Unified Interface
Multiplatform Development

Source: Unreal, Unreal Engine 5

Platform Independence

Unification
Wrappers
Detection

Threads
FS

Network

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 6 / 32



Core Systems

Library of Utilities
Base Debugging & Logging
Memory Management
Data Types
Serialization, RTTI, Parsing
Mathematics – Transform, Geometric, Solvers
...

Core Systems
Debug Log
Profile

Types
RTTI Handles

Test

Parse
ADT

Math
Memory

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 7 / 32



Resource Management

Unified Data Access
Resources & Assets
Toolchain Ñ Pipeline Ñ Assets
“Mark of Style”

Resource Management

Resources
Assets

Manager

Cache
Load

Tools
Code

Toolchain
Pipeline Graphics

Sound

Structured

Source: Unity Manual – Asset Workflow

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 8 / 32



Debugging & Profiling

Complexity Ñ Bugs
What is Wrong?
Instrumentation & Logging
Playtime Statistics, Core Dumps
Remote Debugging & Profiling

Debug

Playback
Statistics

Console
Cheats

Instrumentation

Assert
Logging

D&P Server

Source: Unity Profiler

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 9 / 32



Human Interface Devices

Input & Output
Raw I/O Ñ API
Wide Range
Device Sensors
User Feedback

HID

I/O
Polling

State

Motion
Analog
Digital

Position

Orientation

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 10 / 32



Rendering Engine

Visualization of the Game
“From Zero to Mirrors”
Scene Graph
Materials, Effects, Lighting
Interface Rendering

Renderer

Rendering Engine

Scene Graph

Effects
Lighting
Shading

Camera
Graphics API

Materials

Shaders
Viewport

Spatial

Occlusion

LOD Hierarchy

Interface

Shadows

Particles

UI
HUD

Font
VideoMenu

Source: Vulkan Samples Source: Cyberpunk 2077

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 11 / 32



Physics

Collision Detection Ñ Resolution
Physical Simulation
Simplified Models
Static & Dynamic Objects

Physics

RagdollRigid
Dynamics

Soft Cloth

Collision
Havok

Statics

Simulation Constraint

PhysX

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 12 / 32



Animation

Making Things Move
Animation vs Physics
Kinematics & Dynamics
Rigging, Skinning

Animation
Skeleton

Kinematics

Texture Rigid
Vertex Morph

Skinning
Rigging

Sprite

Dynamics

Source: Unreal, Unity

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 13 / 32



Network

Network Stack
Frontend ˆ Backend
Latency, Replication, Authority Frontend

Network

Backend

Latency

Replication
Authority

VoIP
Chat

MatchMaking Infrastructure

Source: Unity

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 14 / 32



Audio

Often Neglected
Fidelity & Procedural
Realistic Modeling

Audio

Effects

Filters
Playback

Model

Spatial

MixingProcessing

Procedural

Source: AMD TrueAudio Next

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 15 / 32



Scene

Graph Data Structure
World Hierarchy
Entity-Component-System
Composition & Linking

Scene
Level

Graph
Composition

Linking
Entity

Component

Transition

Source: Unity

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 16 / 32



Front End

UI & UX
Aural Feedback
Widgets, Layouts
Data Binding

Front End

Widget
Text

Binding
UI UX

Format
Data

Source: Unity UI Builder

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 17 / 32



Gameplay Foundation

Framework for Building the Game
Scripting Utilities
Low-Level ðñ Gameplay
Game Object Hierarchy
Game Loop [2]

Gameplay Foundation

Scripting
FlowFramework

FSM

Binding
World

Event
Message

Board Hierarchy

Source: Godot Visual ScriptingSource: Robert Nystrom – Game Programming Patterns

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 18 / 32

https://gameprogrammingpatterns.com/game-loop.html


Game-Specific Systems

This is The Game
Gameplay Implementation

Game-Specific Systems
Logic

Genre
Style

Mechanics

Feel
Camera

AI

Control

Game
The

Logic
&

Source: Unity Bolt

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 19 / 32



Unity Engine



What is Unity?

Game Engine
Development Platform
Documentation & Community
Why Unity?

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 20 / 32





















Which to Choose?

AAA & Realistic Ñ Unreal Engine
Agile & Indie Ñ Unity Engine

Non-Programmer Ñ Game Maker
Open & Free Ñ Godot Engine
Learn Engine-ering Ñ Roll Your Own

Learn GameDev Ñ Unity Engine

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 30 / 32



Additional Resources

Source: Statista – The Most Important Gaming Platforms

[Thesis] James Lear: The Video Game Asset Pipeline
[Online] Robert Nystrom: Game Loop
[Online] Unity: Order of Execution for event functions

rIZHVs Introduction to Game Development © 2023, Tomáš Polášek, Martin Čadík 31 / 32

https://www.statista.com/chart/4527/game-developers-platform-preferences/
https://uwe-repository.worktribe.com/OutputFile/7203977
https://gameprogrammingpatterns.com/game-loop.html
https://docs.unity3d.com/Manual/ExecutionOrder.html


Thanks For
Your Attention!

Dune 2 : The Building of a Dynasty



References I

[1] Jason Gregory. Game Engine Architecture, Second Edition. 3rd. USA: A. K. Peters, Ltd.,
CRC Press, 2018. isbn: 1351974288.

[2] R. Nystrom. Game Programming Patterns. UK: Genever Benning, 2014. isbn:
0990582906.


	Engine Architecture
	Unity Engine
	Appendix
	References


