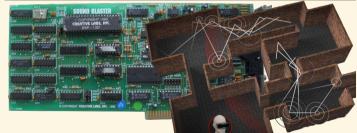

SOUND SYSTEM

DESIGN, SOURCES, SCENE

TOMÁŠ POLÁŠEK IPOLASEK@FIT.VUTBR.CZ

BRNO UNIVERSITY OF TECHNOLOGY

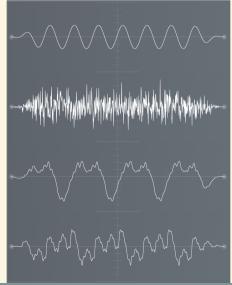
FACULTY OF INFORMATION TECHNOLOGY DCGM, CPHOTO@FIT FACULTY OF FINE ARTS GAME MEDIA STUDIO


INTRODUCTION

Sound in Games

User Communication [2]
 Theme, Mood, Emotion [6]
 Movie × Game: Interaction
 Essential Part of Games [3]

- User Interface
- Interactive Sounds
- Communication
- World Immersion
- Long History
- $\blacksquare \rightarrow$ Audio System



SOUND THEORY

Physics of Sound

- Compression Wave $p(t) = p_a(t) + p_s(t) [Pa]$
- Change in Time \rightarrow Signal
- Sound Sources
- Propagation in Medium
 - Wave Properties: Reflect, Refract, Diffract
 - Absorption & Falloff: $p \propto \frac{1}{r} I \propto \frac{1}{r^2}$

2 / 19

[IZHV] Introduction to Game Development

© 2023, Tomáš Polášek, Martin Čadík

Sound Wave Attributes

Periodic Nature

Period T [s]
Frequency f [Hz]
Phase φ [rad]
Speed v [ms⁻¹]
Wavelength λ [m]

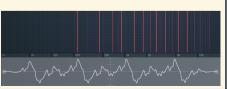
Period 7

 π

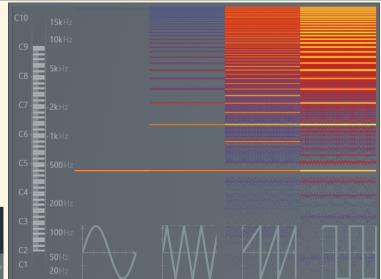
 2π

 $\frac{3}{2}\pi$

 $\frac{1}{2}\pi$


 \triangleleft

Amplitude

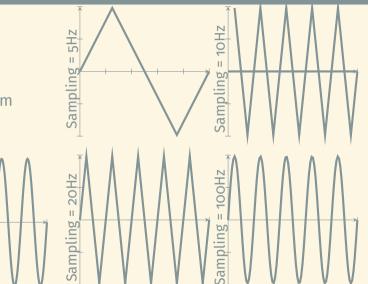

SOUND SPECTRUM

 Signal = Sinusoid Sum
 The Spectrum
 Fourier Transform time time trequency
 Wave Shapes

- Sine
- Triangle
- Sawtooth
- Square

[IZHV] Introduction to Game Development

4 / 19

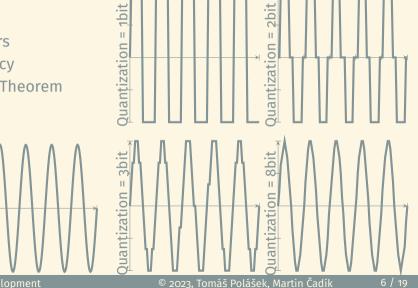

SAMPLING

- Analog → Digital
 AD & DA Converters
 Sampling Frequency
- Nyquist-Shannon Theorem

= 5Hz

Frequency

Quantization


[**IZHV**] Introduction to Game Development

SAMPLING

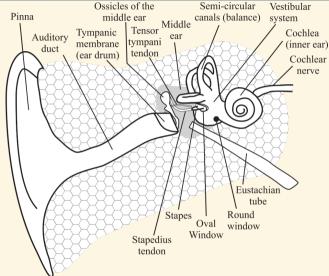
- Analog → Digital
 AD & DA Converters
- Sampling Frequency
 Nyquist–Shannon Theorem

Driginal

Quantization

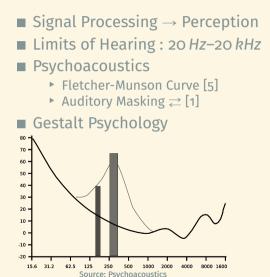
[**IZHV**] Introduction to Game Development

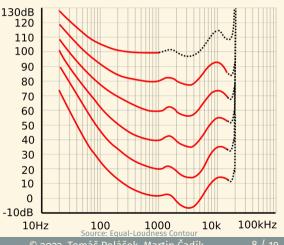
PERCEPTION OF SOUND


Ear Construction [1]

- External Ear
- Middle Ear
- Internal Ear
- Neural Encoding

Sound Loudness [4]


- Sound Pressure $I \propto p_{rms}^2 = \sqrt{\frac{1}{t} \int p(t)^2 dt}$
- Wide Dynamic Range
- Logarithmic \rightarrow decibels [dB]
- Sound Pressure Level (SPL)


$$L_p = 10 \log_{10} \left(\frac{p_{rms}^2}{p_{ref}^2} \right)$$

Source: Engineering Noise Control [1]

PSYCHOLOGY AND ACOUSTICS

© 2023, Tomáš Polášek, Martin Čadík

8 / 19

SOUND DESIGN

HISTORICAL DEVELOPMENT: 8-BIT

Arcade Machines [2]

- Specialized Hardware
- Digital Recording ~> DAC
- Sound Synthesis ~> PSG

Home Consoles [2]

- Shared I/O Chip
- Programmable Sound
- Looping Tracks

Personal Computers [2]

- The Beeper
- Programming & Memory

a / 1a

HISTORICAL DEVELOPMENT: 16-BIT

Programmable Sound Generator

- Voice Channels
- Envelope & ADSR
- Subtractive Synthesis 1

Frequency Modulation Synthesis [2]

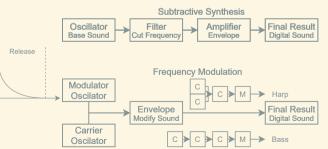
Attack Sustain

Time

ensity

Final Result

Digital Sound


- Frequency Modulation (I) (II)
- Synthesizer (I) (II)
- Table-Based Synthesis

Wav Wanter a bore a switches is

- WaveTable
- Granular

CWawe Tablev

Programmable Sound Generator

[IZHV] Introduction to Game Development

Envelope

Medify Sound

© 2023, Tomáš Polášek, Martin Čadík

10 / 19

HISTORICAL DEVELOPMENT: SEQUENCING

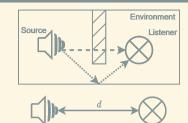
- "Programmer-Composer"
- Sequencer → Synthesizer
 MIDI
 - Standard Format
 - Command Interface
 - Hardware Dependant Sound
- iMUSE [2] (I)
- Music Tracker (I)
- Digital Audio Workstation

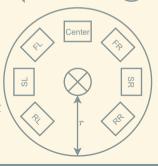
	POSI PATT LENG SPE	ERN GTH ED	000 000 000 012	00	P	TTERN LAY TOP	5	SE PRI SAVE S .OAD S DAD SA	ONG S ONG L
	PRE: SOU VOLU	IND	000		ERSI	<u>on n</u> i		AÇR	ER BEL
	SONG	NAMEI							
		LENAM	IE :		NTHU.		- <u></u>		1
	80	Mel	lody	Accompany		Bass		Percussions	
	00	<u> </u>	0000		0000		0000		0000
	- 2 4 6 ⁻ 0 0 0 0 0 0 0 0			(0000 0000 0000 0000 0000 0000 0000 0000		
	D Rever						anthegen () () () () () () () () () () () () () (0.04 0 () 10 ()	
		Zena Z. Jane Basta Tanati Basta Anti		er pre Unicos el erge entre 3 		Pus T	Proser ///		
	Cittal	antras		B Press				in their has	
	Stram It I		neet aver						$\sqrt{V_{s}}$
	II	ШИ	ши			шn	111 11	шл	
© 2023, Tomáš	Po	lášek	k, Ma	rtin (Žadí			11 ,	/ 19

DIGITAL SOUND DESIGN

- \blacksquare DAW \rightarrow Samples & Synthesis
- Magic of Sound Design (I)
- Diegetic vs Nondiegetic [2]
- Music Track
- Sound Effects Library
- User Interface (I)
 - Digital
 - Mechanical

PHYSICAL SOUND DESIGN

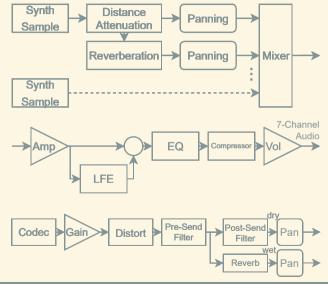

Physical × Synthesis
 Recording + Touch Up
 Sound Effects
 Music & Voice
 Foley (I) (II)



IMPLEMENTATION

Rendering the Audio

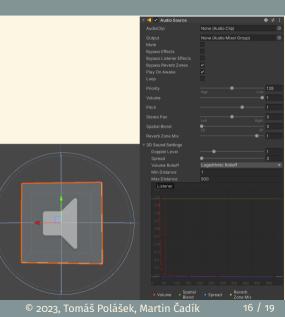
- Direct PlayBack?Modeling the World [4]
 - Environment
 - Sound Sources
 - Listeners
- Sound Synthesis & Triggers
- $\blacksquare Occlusion \rightarrow Indirect$
- Spatialization
 - Distance Attenuation $\frac{1}{d^2}$
 - Volume Panning
- Acoustic Modeling
- Doppler Shift
- Real-Time Tricks



Source: Doppler Shift

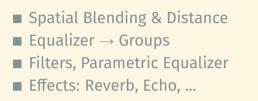
AUDIO ENGINE ARCHITECTURE

- Audio Processing Pipeline
 Sound Voices
 - Degree of Polyphony
 - ▶ 2D × 3D
- Voice Pipeline
- The Master Mixer
 - Mixing Voices
 - Depth & Rate Conversion
- Output Bus
- Audio Engines:
 - System Audio
 - ► FMOD
 - Wwise


© 2023, Tomáš Polášek, Martin Čadík

5/19

AUDIO IN UNITY


AUDIO OVERVIEW

- Hierarchy Integration
- Audio Source & Listener
- 2D and Full 3D
- Audio Asset Support
- Profiler Section
- Tracker Modules

[IZHV] Introduction to Game Development

AUDIO MIXING

H Audio Mixer Mixers PrimaryMixer (Audio Listener) -	+ Master 20	Reverb 20	Music 20	F Voice 20	i Exposed Parameters (0) 👻	Threshold Attack Release Make up gain
	+ 👝					Distortion
<mark>i</mark> r Groups ceo ⊎ Master	+ -20					ParamEQ
Reverb Music Voice						
	-80.0 dB	-80.0 dB	-80.0 dB	-80.0 dB		
- View		Attenuation Lowpass Compressor Distortion ParamEQ	Attenuation SFX Reverb			
	Add	Add	Add	Add		Frequency gain

0 n Attenuation 0.00 dB Lowpass Cutoff frea Compressor 0.00 dB 50.00 ms 50.00 ms 0.00 dB 1.00 octave © 2023, Tomáš Polášek, Martin Čadík

[IZHV] Introduction to Game Development

Additional Resources

- [YouTube] Trackers: the sound of 16-bit
- [YouTube] Augmented Second An Analysis of the Arabic Interval
- [YouTube] Signal Processing for Sound Design
- [YouTube] Magic of Making Sounds
- [Software] Sonic Pi

REFERENCES I

- [1] DAVID BIES. ENGINEERING NOISE CONTROL. LONDON: CRC Press, 2017. ISBN: 9781498724050.
- [2] KAREN COLLINS. GAME SOUND: AN INTRODUCTION TO THE HISTORY, THEORY, AND PRACTICE OF VIDEO GAME MUSIC AND SOUND DESIGN. Mit Press, 2008.
- [3] JAIME CROSS. GAME AUDIO AND THE 50% FALLACY. https://speedyjx.com/2015/06/04/game-audio-and-the-50-fallacy/. 2015.
- [4] JASON GREGORY. GAME ENGINE ARCHITECTURE, SECOND EDITION. 3rd. USA: A. K. Peters, Ltd., CRC Press, 2018. ISBN: 1351974288.
- [5] JARED H. FLETCHER MUNSON CURVE: THE EQUAL LOUDNESS CONTOUR OF HUMAN HEARING. https://ledgernote.com/columns/mixing-mastering/fletcher-munsoncurve/. 2021.
- [6] DAVID SONNENSCHEIN. Sound DESIGN: THE EXPRESSIVE POWER OF MUSIC, VOICE, AND SOUND EFFECTS IN CINEMA. Michael Wiese Productions Studio City, 2001.