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Figure 1. Our virtual trip creation pipeline: 1. User takes photographs during a hike; 2. We augment the input collection with images downloaded
from Flickr.com; 3. Camera positions and sparse 3D point cloud reconstruction using Structure from Motion; 4. Scene alignment with the terrain using
ICP; 5. Fly-through generation from the input photographs from the hike; 6. We export the fly-through to Google Earth or to our virtual reality viewer.
Map data © 2018 Google, © Mapbox, © OpenStreetMap.

ABSTRACT
Since the advent of consumer photography, tourists and hikers
have made photo records of their trips to share later. Aside
from being kept as memories, photo presentations such as
slideshows are also shown to others who have not visited the
location to try to convey the experience. However, a slideshow
alone is limited in conveying the broader spatial context, and
thus the feeling of presence in beautiful natural scenery is lost.
We address this by presenting the photographs as part of an
immersive experience. We introduce an automated pipeline for
aligning photographs with a digital terrain model. From this
geographic registration, we produce immersive presentations
which are viewed either passively as a video, or interactively
in virtual reality. Our experimental evaluation verifies that
this new mode of presentation successfully conveys the spatial
context of the scene and is enjoyable to users.
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INTRODUCTION
The human desire to travel is an affectation that goes back to
before written history. So does, it would seem, the desire of
travelers to share the experiences from their journeys. Travel
literature is known to us since antiquity, and was a staple of
medieval and early modern writing [44, 27, 5]. More recently
as photography became widespread, it started to be widely
used to record and share impressions from travels and vaca-
tions, indicating a desire to convey these experiences in a more
engaging and immersive way.

Previous research has explored putting the photographs in
a spatial context by manually registering them to a topographic
map represented as a Digital Elevation Model (DEM) through
tools such as PhotoOverlay in Google Earth [4]. Photo un-
cropping methods [37, 60] mine collections of external pho-
tographs for visual data with which to extend the field-of-view
of the user’s own photos. Structure-from-motion (SfM) meth-
ods register large collections of photographs of an artifact
to create a 3D model, allowing a structured exploration of
the photo collection [42, 43, 41, 22]. An extension of this
work [50] uses accurate 3D models of urban environments
to align the reconstructed scene and photographs with the
physical geometry.
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Figure 2. Visualization of four modes of presentation. 1. slideshow: pho-
tographs are presented sequentially. 2. GPS slideshow: the slideshow
with a map showing the position of currently shown photograph. 3. pas-
sive fly-through (ours): photographs aligned with the terrain are pre-
sented in a passive fly-through. 4. interactive fly-through (ours): the
user can freely look around during the fly-through. Map data © 2018
Google, © Mapbox, © OpenStreetMap.

In this paper, we utilize recent advances in computer vision and
virtual reality to increase the immersiveness of a photo presen-
tation. Specifically, we have developed a process, illustrated
in Figure 1, to extract 3D location and orientation information
from collections of photographs taken on hiking trips, which
we further use to align the photographs to a virtual representa-
tion of the actual terrain. We use this information to enrich the
presentation with supplementary geographic data and replay
the experience from a first-person perspective. We show that
this pipeline works in general landscapes and requires only
rough DEM data. By using the recovered information to auto-
matically place the photos in the virtual terrain, we facilitate
a rich first-person exploration experience which supplements
the aesthetic and informational value of the photographs with
contextualized spatial information.

The target audience of our method might be divided into two
groups: (1) hikers who wish to share the experience of a hike,
and (2) viewers who wish to learn more about hikes at loca-
tions they have not yet visited. Users from the second group
who enjoy the presentation may then re-create the hike them-
selves. Therefore, the purpose of sharing travel photographs is
not just to enjoy scenery, but to convey the entire experience
of visiting the remote location.

Our goal is that our enhanced photo presentation will assist
viewers to gain spatial orientation, better understand the scene,
and enjoy the viewing experience. To evaluate these effects,
we conduct a user study comparing four different modes of
presentation (illustrated in Figure 2 and a video in the supple-
mentary material) on four datasets from different locales. The
tested modes consist of a traditional slideshow, a slideshow
with GPS markers shown on a map (GPS slideshow), and two
modes produced by our method. A fly-through from photo

to photo precisely aligned with a virtual terrain model was
in one mode viewed passively as a rendered video (passive
fly-through), and in the other interactively in virtual reality
(interactive fly-through).

In summary, we present a new geo-registration pipeline for
outdoor photo albums. We demonstrate this pipeline works in
expansive natural outdoor environments, and for photographs
captured with ordinary consumer hardware. We apply this
geo-registration to automatically generate new modes of im-
mersive first-person presentation for these albums; specifically
a passive fly-through, renderable as video and compatible with
tools like Google Earth, and an interactive fly-through which
presents the trip in virtual reality. We also conducted experi-
ments which demonstrate that these immersive presentation
modes help user understand the spatial relations in the region
significantly better than a traditional slideshow, and that the
interactive VR experience is enjoyable.

RELATED WORK
Motivating our approach, previous research has found that
users’ spatial understanding can be facilitated by incorporat-
ing animation [2], spatial context [53, 52], interaction [20],
and panoramas [6]. We focus on work that exploits spatial
information for presentation, processing, and management of
photographs, and finally examine other related applications
outside the photography domain.

Photography Presentation
Previous research has explored alternative presentations of
photographs. Chippendale et al. [4] summarized possible fu-
ture applications of geo-localized photography like automatic
creation of PhotoOverlays in Google Earth, or photographs
augmented with peak names and GPS tracks. Snavely et al.
explored presenting photographs in a 3D environment in their
PhotoTourism paper [42], which uses SfM to reconstruct
3D point clouds for famous landmarks. They also designed
a method for automatic path planning and photo exploration
in the reconstructed environment [41]. Subsequent work uses
similar techniques for automatic path planning [22] and effec-
tive photo acquisition of a site of interest [40]. Hyper-lapse
videos [19, 51] yield a similar visual experience by smoothing
and stitching egocentric videos. However, 3D point clouds
used by PhotoTourism and others [22, 41, 42] are not suitable
for visualization of a re-created trip. For example, in natural
environments, usually only front facing parts of mountains are
reconstructed leading to incomplete point clouds. Since a tour
can traverse widely spaced viewpoints, the partial model re-
construction may result in poor visuals between photographs.
Our method solves this problem by using the terrain model,
which is more suitable for presentation of the whole trip.

Exploring spatially positioned photographs without 3D recon-
struction has been proposed as well. Kaneva et al. [17] use
image retrieval to find similar images, stitch them together
and create a fictitious photorealistic virtual space. Tomp-
kin et al. [46] combine videos with a panoramic image so
the user better understands the mutual orientation and tem-
poral relationship of different videos taken from the roughly
same place. Veas et al. [49] studied spatial understanding and



navigation in outdoor environments, using video streams from
several cameras. Video presentation in a 3D space has also
been used to improve medical responses [23].

Visualization of images with geographical information is avail-
able commercially via online services such as Flickr and
Google Maps. Researchers have explored visualizing pho-
tographs in a map online [48], or in virtual reality [25]. Geo-
tagged social media enables spatial navigation interfaces for
photo albums [47], even composited atop panoramas from
Google Street View [10]. Note that these interfaces are not
designed to convey a virtual hike experience. VR BBS [25]
is for sharing photographs and messages in a virtual environ-
ment, with users plotting their own course through a flat map
with 3D sprites of photographs. In contrast, our system leads
the user automatically through virtual terrain containing the
sequence of photographs of a re-created trip. Additionally,
these previous works do not precisely align image content
with the environment. This is a key ingredient of the seamless
in-situ visualization implemented in our method.

The work most similar to ours is Kuchelmeister et al.’s [21]
presentation of an immersive visualization of photographs
taken by SenseCam jointly with a virtual model of a 3D
outdoor scene. The intent of their work is to study the ef-
fect of browsing photographs in this virtual environment as
a memory-prosthesis for patients suffering from amnesia. In
contrast, our work does not use any specific device for collect-
ing photographs, and our experiments are focused towards the
orientation of users in the presented space and enjoyment of
such a visualization.

In summary, previous methods are not designed to re-create
a virtual hike experience. Specifically, we focus on the single-
user-multiple-landmarks scenario, whereas PhotoTourism [42]
addresses the multiple-user-single-landmark scenario. This
has algorithm implications, so e.g. PhotoTourism and VR
BBS [25] require much more elaborate capture processes.
A key idea of our processing is to download additional imagery
to help the reconstruction (see Figure 1), but use only user-
generated photographs for the presentation.

Photography Processing
Automatic immersive presentation of photographs requires pre-
cisely estimating camera parameters with respect to a world
model. The most similar approach for photograph geo-
registration is from Wang et al. [50], who use SfM for scene
reconstruction, GPS positions of cameras for initial geo-
localization and rigid fine-tuning of the scene with 3D building
models using ICP. As they use vanishing points to estimate the
reconstructed scene up vector, the method is limited to urban
scenes with linear features. In contrast, we demonstrate that
for natural environments, the GPS positions of Flickr images
provide sufficiently precise initial geo-registration to enable
further refinement with the terrain model.

Spatial awareness can be also improved by automatic un-
cropping of a photograph [37, 60]. These methods differ
significantly from our approach in that they do not combine
photographs with terrain models, though the concept of down-

loading many similar images from the same place for further
processing is related.

Photography Management and Categorization
Our immersive presentation is related to photo browsing and
management systems. The rapidly growing number of pho-
tographs being taken has motivated research into effective
searching [38] and clustering of photographs [28, 29], which
can also be based on space and time [11, 56]. The difficulty
of browsing, sorting, and clustering photographs manually
has led to novel interfaces such as Photohelix [15]. Rod-
den and Wood [32] show that users tend to use simple fea-
tures of photo management software, and also that managing
photographs digitally is easier than managing printed pho-
tos. Harada et al. [12] designed an automatic searching and
browsing tool for photographs on mobile devices. Schoeff-
mann et al. [33] show that photographs organized into a 3D
cylinder or globe help users with faster visual search.

Related Applications
Researchers have explored narrative storytelling with mobile
photos [1] or photo blogs [18], or even writing fictional sto-
ries [31], as alternate ways of facilitating user engagement.
Chelaramani et al. used photos of a historical site to create
a multimedia tour guide for cultural heritage [3]. Other work
has combined photos with animations [40] or 3D models [8]
for cultural heritage as well. Immersive presentations such as
virtual reality [14] and mobile augmented reality [13] have
been found to improve appreciation of historical sites [45].

For productivity applications, PhotoScope [56] combines
photo albums and building floor plans to aid construction
management. Immersive presentations of many video feeds
have been used to support video surveillance tasks, with desk-
top spatial navigation [7], desktop 3D environments [36], or
full immersive virtual reality presentation [9]. Taken together,
these related applications all support the notion that present-
ing photo albums of a remote location in virtual reality can
improve users’ engagement with the presentation and their
resulting understanding of the experience.

METHOD
The pipeline we use in our method is visually summarized
in Figure 1; a more detailed flowchart of the pipeline can be
found in the supplementary material in Figure 1. Our goal is
to reconstruct from photographs a real hike in a virtual model
of the real terrain. The input to our method is a collection of
photographs taken on a hike Ih, together with the geo-rectangle
designating their rough geographical extent, which can be read
from embedded GPS information if available. We take the user
photographs Ih as-is, we do not consider color enhancement
as a part of our pipeline. We augment this collection with
additional photographs from the same geo-extent I f , which
can be harvested from online repositories such as Flickr, to
improve coverage of the terrain for better reconstruction. We
jointly mine the merged photoset for both GPS metadata and
visual features, which we use to obtain a rough geo-registration
through a Structure from Motion (SfM) pipeline. We align the
result of the reconstruction with known DEM terrain data to
fine-tune the camera estimation. Finally, we construct a virtual



presentation that shows select photographs and renders fly-
throughs from one camera pose to the next as a transition
between the consecutive photographs.

Imageset augmentation
We conducted initial experiments with datasets from the au-
thors’ personal collections in a variety of locations. Although
these datasets were uncurated (i.e. contained all the pho-
tographs taken, including those that would not be selected
for presentation), we found that a single user does not usu-
ally provide sufficient coverage of the space for a reliable 3D
reconstruction. This may be tested by running the matching
stage of the SfM reconstruction on the set of user photographs
Ih. If the number of matching images with strong matches is
low, we perform imageset augmentation. We augment each
of the original collections Ih with images downloaded from
Flickr I f . This has the additional advantage that the original
dataset Ih need not contain GPS information, since we may
use GPS from the downloaded photographs I f . However, in
absence of any GPS information in user photos Ih, we need the
user to provide the rough extent of the visited area, specified
as e.g. center and radius.

We download these images through the Flickr API, query-
ing for the specific geo-extent covering the area of the input
photographs, which we additionally restrict to a specific time
interval. This ensures that the downloaded photos are taken
during roughly the same time of year, improving matching
and reconstruction by eliminating seasonal changes.

Some of the images retrieved with a location filter may contain
irrelevant data rather than natural outdoor scenes (e.g. indoor
images, close-ups of vegetation or portraits of hikers, etc.). We
filter them to improve efficiency of our algorithm. To select
only relevant images, we apply a scene understanding neural
network (ResNet18) trained on Places365 dataset [59] to find
images that are most likely both outdoor and natural. Please
note, that we perform this filtering only on downloaded images
I f , and keep user-generated photographs intact.

Given an input image, the network estimates matching scores
for a list of semantic categories defined in the Places365
database. The semantic category is a high-level representation
of a place, e.g., bedroom, beach, or mountain. For each seman-
tic category, the Places365 dataset defines whether it is indoor
or outdoor. Per-image, we select the semantic categories with
the 10 highest scores; if majority of them are indoor, the image
is classified as indoor and otherwise outdoor.

To implement the natural/unnatural classification, we use the
image attributes from SUN attribute dataset [26]. Semanti-
cally overlapping image attributes describe scenes with fine
granularity. We cluster the attributes as either natural (non-
urban images) or unnatural (everything else). Examples of
natural attributes include foliage, leaves, or hiking; examples
of unnatural attributes are pavement, carpet, or stressful. The
CNN estimates per-attribute correlations for an input image.
We sum all correlations for natural attributes and subtract cor-
relations for the unnatural attributes. If the outcome is greater
than zero, then we classify the image as natural.

Figure 3. Alignment of input (red) point cloud with the reference (green)
point cloud sampled from the terrain using Iterative Closest Points. The
blue point cloud is the result. Map data © Mapbox, © OpenStreetMap.

Scene reconstruction
Next, the mixed collection Im = Ih ∪ I f of input hike photos
Ih and Flickr photos I f is fed into the reconstruction pipeline.
We tested several publicly available Structure from Motion
pipelines [55, 54, 24, 43, 34]. For reconstructing our mixed
collections Im we obtained the best results using the publicly
available COLMAP implementation [34]. We found it impor-
tant to use approximate matching with a vocabulary tree and
an enhanced voting strategy for fast spatial verification [35],
since exhaustive matching is significantly slower. We use
a 256k vocabulary tree provided by the COLMAP authors1.
Typical reconstruction time of a dataset of 4k photographs was
several hours on a desktop PC with NVIDIA 970 GTX GPU.

For geo-registration using GPS from Flickr images, we use
a robust Least Median of Squares (LMeds) combined with
RANSAC [58] using euclidean distance of the reconstructed
camera position and the corresponding GPS position (resid-
ual). Instead of minimizing the sum of squared residuals, we
minimize their median, which is more robust towards outliers.
Using this minimization approach, we estimate a similarity
transformation to transform (translate, rotate, and scale) the
scene into world coordinates.

Fine-tuning
Because of uncertainties in camera configuration, GPS loca-
tion, and other parameters, there is no guarantee that the initial
geo-registration actually matches the known terrain. To rem-
edy this, we refine the initial geo-registration by minimizing
the euclidean distance between the reconstructed 3D point
cloud and the known DEM terrain data. We segment the point
cloud into disjoint clusters so that two points in the same clus-
ter are at most 1 km apart from each other. For each cluster,
we calculate its bounding box and sample the terrain on a grid
with 10 m spacing. We align the reconstructed 3D point cloud
and the sampled terrain using Iterative Closest Points (ICP)
with the Libpointmatcher library [30] with default parame-
ters. The algorithm first reduces the input and reference point
clouds (see Figure 3) by random sampling, keeping 75% of
all points. Next, the algorithm iteratively performs a series
of steps: 1. each point is matched to its nearest neighbors in
euclidean space; 2. points too far from the reference point
cloud (outliers) are removed (85% of points with smallest
distance are kept); 3. minimization of point-to-plane distance
is performed [57]; 4. check if convergence or the maximum
number of iterations (40) has been reached.
1https://demuc.de/colmap/

https://demuc.de/colmap/


Figure 4. Examples of images before (left) and after point-cloud to ter-
rain alignment using ICP (right). Top row: Yosemite Waterfall, CA,
USA, middle row: Jakes Peak at the Lake Tahoe, CA, USA, bottom row:
Mount Everest, Nepal. Map data © 2018 Google.

After registering the model, we are often left with mismatches
between the photo content and the virtual terrain, most of
which are due to bad information about camera configuration
(e.g. focal length, exact GPS position, etc.). Furthermore, be-
cause of the limited sampling rate of the DEM, some cameras
may end up below the virtual terrain after the ICP alignment,
which we solve by moving them vertically to the terrain height.
However, both of these problems introduce errors in camera
orientation parameters.

To correct the registration errors, we leverage our knowledge
of the correspondences between 2D points oi observed in the
photographs and the 3D points pi in the virtual terrain. We use
these correspondences to optimize the orientation parameters
using the Kabsch Algorithm [16]. We project the 2D observa-
tions oi using camera parameters into 3D points pi based on
the euclidean distance between camera center and the corre-
sponding 3D point. From both sets we subtract their centroids
and calculate the rotation matrix using the Kabsch algorithm
R = K(pi, pi). The results of the fine-tuning are shown in
Figure 4. Table 1 illustrates the matching accuracy of the re-
constructed 3D point cloud with the sampled terrain. Because
a reconstructed model usually contains a small number of out-
liers, we report the median euclidean distance between each
3D point pi and its closest point on the sampled terrain. To
illustrate the accuracy of the reconstruction, we also include
the mean reprojection root mean squared error (RMSE) across
all cameras in given dataset.

Fly-through creation
For the fly-through presentation, the user selects a curated sub-
set of photographs Ic ⊆ Ih based on their aesthetic preference.
Although we know the camera pose for each photograph from
the registration, we still need to estimate the actual hiking
path taken from one camera position to the next. We generate
a smooth camera path by constructing a Catmull-Rom spline

dataset Me D(pi) [m] Me D(pi)-ICP [m] µre [px]
Nepal 1624.62 819.98 0.41
Tahoe 2814.24 72.82 0.88
Tatras 2908.59 2410.21 0.47
Yosemite 14041.70 348.33 0.50

Table 1. Median alignment error (Me D(pi)) of the point cloud and the
terrain before and after ICP, and mean RMSE of the reprojection (µre).
The median alignment error Me D(pi) is significantly lower after align-
ment using ICP.

with the camera positions from Ih as control points. Alter-
nately, if a full GPS track is available, it may be used as the
camera path instead to ensure that the presentation follows the
trail between photographs. Please note, that the selection of
the curated subset of photographs Ic affects only which pho-
tographs will be presented; the reconstructed path is the same
for different subsets of Ic.

We initialize the set of control points Pc with the positions of
the curated photographs Ic. We add the remaining positions
from the reconstructed photos Ih in a greedy way—a point is
added only if it is further than 100 m from all points in Pc. The
control points Pc are sorted according to the time of capture of
the corresponding photograph parsed from EXIF. The Catmull-
Rom spline is generated from the selected control points Pc.
In case any point of the spline is located below the terrain,
we project it above the terrain height by a fixed margin. We
smooth the generated spline using a low-pass box filter.

A part of the spline between consecutive control points is
called a segment. In passive mode, as the camera moves along
a segment, we smoothly interpolate camera parameters. Field-
of-view is interpolated linearly between photographs of con-
secutive control points; the camera orientation is interpolated
to look in the direction of the next control point. For transi-
tions from one photo to the next, we use spherical interpolation
between the two orientations, with the camera located at the
center of the sphere to achieve near-constant angular speed.
The speed of the camera is calculated automatically—for more
distant control points the camera flies faster, accelerating and
decelerating at the start/end of the segment, respectively. In
interactive case, the field-of-view and orientation are defined
by the output device (e.g. the headset), and the speed of the
flight is controlled directly by the user. Also, in interactive
mode the user can move in a small neighborhood of the current
position on the spline. In passive mode, the position of the
camera is restricted to the generated spline.

To generate the actual presentation, we combine the fly-
through with the photographs rendered with appropriate cam-
era parameters over the virtual landscape. In the passive case,
we cross-fade from the end of a fly-through segment to the
photo we wish to display and then cross-fade to the next seg-
ment. In the interactive case, the cross fade for leaving the
photograph is triggered by the user. In both cases, accurate
estimation of camera parameters ensures the transitions are
smooth.



dataset Ih I f Im Ihr Imr

Nepal 1586 815 2401 412 901
Tahoe 302 (36) 0 302 78 (7) 78 (7)
Tatras 0 4146 4146 297 297
Yosemite 543 (117) 4173 4716 167 (33) 2094

Table 2. Number of photographs in our datasets. Ih – input hike pho-
tographs captured by user, I f – number of downloaded Flickr images, Im
– number of mixed photographs entering the reconstruction, Ihr – num-
ber of hike photographs that were successfully reconstructed, Imr – num-
ber of all reconstructed photographs. Panoramic images are included
and denoted by numbers in brackets.

EXPERIMENTS
The goal of our method is to create an enjoyable presenta-
tion which helps the viewer understand the physical layout of
the place where the photographs were taken. We conducted
a user study that compares four modes of presentation of pho-
tographs; two traditional, and two based on our method. We
evaluate these methods on viewer enjoyment, sense of pres-
ence, and a quantitative task that measures how well the user
can localize previously unseen photos from the same space
after viewing the presentation. First, measuring enjoyment
is important to understand if users want to use our method.
Second, we measure the sense of presence to determine how
immersed users become on a virtual hiking trip. Third, we
asses users’ orienteering capability conditioned on the presen-
tation method to determine if our method measurably impacts
users’ spatial understanding of the environment. We use four
datasets processed with our pipeline, and from each dataset we
select one subset of photographs for presentation and a disjoint
subset for evaluation.

Datasets
Out of the four datasets we used in our experiment, three
were captured manually on location at Lake Tahoe, CA, USA,
Yosemite Valley, CA, USA, and the Himalaya mountains in
Sagarmatha National Park, Nepal. The fourth dataset from the
High Tatra mountains in Slovakia was collected from Flickr.
Each dataset was captured by a different photographer. The
Lake Tahoe dataset was reconstructed directly without any
auxilliary photographs, while Yosemite and Nepal were aug-
mented using Flickr images. The statistics on the number of
captured photographs Ih, photographs downloaded from Flickr
I f , as well as successfully registered user photographs Ihr,
and total successfully registered photographs Imr are shown
in Table 2. All four datasets were processed with our geo-
registration pipeline and exported to Google Earth through
KML for the passive mode, and to our implementation of a VR
viewer in Unity with the terrain loaded from Mapbox for the
interactive mode.

Modes and Setup
We compared four modes of presentation, shown in Figure 2
and the supplementary video. The baseline mode slideshow is
a standard photo slideshow without any additional information.
The second mode GPS slideshow is a slideshow with camera
positions marked on a map as presented in Adobe Lightroom.
For each photograph, the user can explore a Google “terrain”
map with contour lines in fixed zoom level, where all the
photographs in the presentation are localized and the current

dataset positional error heading error
Tahoe discr. 0/6 0/6
Tahoe cont. 353.61±230.29m 32.05±28.39°
Yosemite discr. 0/4 3/4
Yosemite cont. 1189.33±748.61m 23.81±20.44°
Nepal cont. 4710.74±2833.38m 75.14±53.34°

Table 3. Pilot study data. For discrete version the numbers denote a
fraction of wrong answers. For continuous measurements the mean and
standard deviation is reported.

one is highlighted. The third mode passive fly-through is the
passive version of our method: a fly-through in Google Earth
generated by our geo-registration pipeline. The user is first
shown the path of the tour in a top-down view. The view then
transitions to the camera position and orientation of the first
photograph, with the photograph drawn over the terrain. As
the user presses a button, the view flies to the next camera
position and shows the next photograph in the same fashion.
Once the fly-through is finished, the presentation returns to the
initial top-down view. The final mode interactive fly-through
is the interactive version of our method, with the fly-through
presented in VR. The user is first given an opportunity to
familiarize themselves with the region’s terrain from a bird’s-
eye view several kilometers up. They are next teleported to the
fly-through, which proceeds in a similar fashion to the passive
mode, except the user has the opportunity to look around freely
and is able to control the speed of movement along the camera
path in order to reduce risk of motion sickness.

In all modes, the user sees each photo only once without the
option to go back. All modes and datasets were presented
on a calibrated2 15′′ MacBook Pro Retina display in native
resolution 2880 × 1800 pixels under office lighting, with
the exception of the interactive fly-through mode, which was
presented using an HTC Vive. Each participant tested all
four modes, each with a different dataset to avoid learning
effects. The mode-dataset pairing and the mode order were
randomized for each participant.

Pilot study
To help design the main study, we performed an initial ex-
periment with one participant. The female participant was
a co-author of the Tahoe dataset and familiar with the terrain
in the Yosemite dataset, with extensive experience in using
maps for navigation. The purpose of this test was to determine
whether the task is better evaluated using discrete or continu-
ous questions. The participant was first shown a presentation
of at most 20 photographs and afterwards was asked to com-
plete a task with a selection of photographs from the same
dataset, but disjoint from that shown in the presentation.

In the discrete scenario, the participant answered binary ques-
tions about camera heading and position. For position, she
was shown a query photograph taken chronologically between
two consecutive photographs from the presentation, and asked
to identify whether the viewpoint of the novel photographs

2The calibration was performed by X-Rite GretagMacbeth Eye-One
Display colorimeter to D65, 120 cd/m2, and colorimetrically charac-
terized by measured ICC profiles.



is closer to that of the earlier photograph or that of the later
photograph. For heading, she was shown a query photograph
and a reference photograph from the presentation and asked
to identify whether the query photograph camera orientation
is to the left or to the right of that of the reference photograph.

In the continuous scenario, the participant was asked to mark
two points in an online map for each photograph. The first
corresponds to the camera viewpoint of the query photograph.
For the second, the participant could pick an arbitrary refer-
ence point in the query photograph and then select a point
on the map that corresponds to the location marked in the
photograph (see Figure 5).

Initially, we tested the Tahoe dataset in slideshow mode, and
Yosemite dataset in passive fly-through with both discrete and
continuous variants. For each variant, we tested 4-6 different
photographs. Since the participant visited both areas earlier,
we added a test on the Nepal dataset in passive fly-through
with a continuous variant. The results are shown in Table 3.
The discrete and continuous variants are consistent on the
Yosemite dataset; the participant is able to estimate heading
more accurately than position for both task sets on this dataset.
Conversely, even though the participant achieved perfect suc-
cess on the discrete heading task for both Tahoe and Yosemite,
the continuous heading error is higher on the former. The
continuous errors are notably higher on the Nepal dataset, sug-
gesting there is a significant difference in difficulty between
datasets, possibly related to spatial extent and complexity of
terrain. The participant expressed preference for the continu-
ous tasks, describing them as an interesting puzzle, as opposed
to the discrete tasks which she tended to answer randomly
when in doubt. Another issue in the discrete task is that when
the rotation is close to 180° with respect to the reference, it is
extremely difficult for the participant to answer correctly as
the difference between “left” and “right” is only a few degrees.
Based on these observations we selected the continuous task
set as the evaluation method for the full user study. We ex-
pected it to give us more information with less variance even
with a small number of participants, which was limited by the
long duration of each test (up to 1 hour for all four modes with
each participant). We also expected the continuous task set
to be more engaging for the users and thus keep them more
focused. Finally, we realized the necessity of normalizing
errors per-dataset due to high observed variation in dataset
difficulty.

We also performed a field-type experiment where we presented
photographs from the Nepal dataset in the slideshow and the
passive fly-through presentation modes to a broader audience
of approximately 40 people. After the presentation, the audi-
ence completed a short questionnaire asking which of the two
methods they preferred more and whether the terrain model
helped them better understand the positions and orientations
of the photographs compared to the slideshow. Out of 40
participants, 22 completed the questionnaire. Regarding the
first question, 8 participants replied that they liked the fly-
through more than the slideshow, 10 participants liked both
roughly the same, and 4 participants liked the slideshow mode
more. Responses for the second question were even more pos-

Figure 5. Example task from Lake Tahoe. The participant marks a
position on the map (right image #1) of the query photo (left image) and
the reference point (left image, red star) and corresponding position of
the reference point on the map (right image #2). Map data © Mapy.cz.

itive: 14 participants agreed that the fly-through helped them,
2 participants replied that both modes helped them roughly
the same and 4 participants replied that the slideshow helped
them more. A final question asked participants to write what
they liked or disliked. Participants disliked the abrupt speed
of camera rotations during transitions in the fly-through. We
identified this as the main reason why 14 out of 22 partici-
pants preferred the slideshow or had no preference in the first
question. Due to this finding, we adjusted the angular velocity
to ensure smooth camera rotations. Furthermore, subsequent
experiments were designed based on the experience from this
field experiment.

Evaluation Methodology
Each participant was instructed about the purpose of the ex-
periment and completed a screener questionnaire. Before the
first experiment, we explained the task with a dummy exam-
ple. The procedure was as follows: a presentation of at most
20 photographs was shown to the participant. The participant
viewed one picture at a time as determined by the presentation
mode. The participant was not allowed to return to previously
viewed photographs. After the presentation, the participant
viewed 6-7 photographs not present in the presentation, but
taken on the same dataset. For each photograph, we performed
the continuous task variant, as determined by the pilot study,
in which the participant indicated the position and heading
of the camera by marking a map. The participant was not
allowed to move already placed marks once they continued
to the next photo, or to return to a previous photo during the
test. The participant was allowed to zoom in to the online map
during the task, as well as to move around within the area of
the dataset. If they moved out of the area, the moderator would
reset the map to the initial view. The initial zoom level was
chosen so that the area of the whole dataset would fit inside
the window. The digital map featured a top-down view with
only the names of points of interest (POI), tourist pathways
and contour lines showing elevation.

User Study
Participants
We assembled 21 volunteers, predominantly bachelor and
master students of informatics (17) and law (4); 3 women
and 18 men. One participant had been to Lake Tahoe, 4 to
Yosemite, 13 to High Tatra Mountains, and 1 to Nepal. 14 par-
ticipants had some experience with virtual reality. Each partic-
ipant had at least basic knowledge on how to use a map: one
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Figure 6. Differences between datasets before normalization of mean po-
sitional error µep (left) and after normalization µenp (right). The central
red mark indicates the median, the green diamond denotes the mean, the
bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme positional errors
not considered outliers, and the outliers are plotted individually using
the ‘+’ symbol

participant used maps several times in his life, 5 participants
used maps at least once a year, 10 participants used maps at
least once a month, and 5 used maps at least once a week.
Where possible, we correct our experimental data for the bias
introduced by these factors.

Error measures
We report two error measures per test photograph: the po-
sitional error ep, and the heading error eh. Both errors
are calculated based on ground truth photograph position
pg and orientation hg. The positional error ep is the eu-
clidean distance between the ground truth pg and measured
pm position: ep = ||pg − pm||. The heading error is the
smallest absolute difference between the ground truth head-
ing hg and the measured heading hm (in degrees): eh =
min(|hg−hm|,360−|hg−hm|).

Positional Error Model
We use different datasets for each test to avoid learning effects,
but this introduces the possibility that performance may be
correlated with dataset difficulty. To compensate for dataset
and user differences, we model the positional error as a normal
random variable ep ∼N (sdm, σ2), where s is a factor of the
subject’s ability, d is a factor of the dataset difficulty, m is fac-
tor of the mode properties, and σ2 models measurement noise.
Since we want to compare modes based on the positional error,
we need to mitigate the effects of dataset factor d and subject’s
ability factor s.

We expect that the Nepal and Tatras are more difficult than
the Tahoe and Yosemite because the trips made in the Nepal
and Tatras are much longer and the terrain profile is more
complicated. Figure 6(left) confirms this, but the positional
error ep has different scale for each dataset due to different
geographic extents. One-way ANOVA clearly rejected the null
hypothesis (F(3,542) = 149.85, p < 0.001), that the means
of positional errors ep do not vary significantly across datasets.
Further inspection reveals that the Nepal dataset has signifi-
cantly higher positional error than other datasets across all
methods. We attempted to normalize the errors by divid-
ing it by the dataset extent. This moved the scale between
datasets closer, but the null hypothesis was still clearly re-
jected (F(3,542) = 10.85, p < 0.001). In this case, the Tahoe
dataset was shown to have significantly lower mean error than
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Figure 7. Repeated measures scenario comparing differences between
normalized positional error enp on different modes of presentation (S =
slideshow, GS = GPS slideshow, PF = passive fly-through, VR = immer-
sive fly-through). The mean value for each method is denoted by green
diamond.

other datasets. Instead, we use the baseline mode slideshow
as a dataset calibration measure. We calculate the normalized
positional error enp(d) for each dataset d by dividing by the
mean of the positional error ep(d,ms) for the slideshow mode
ms and the dataset d:

enp(d) =
Ndep(d)

∑ep(d,ms)
, (1)

where Nd is the number of measurements for dataset d. This
yields the lowest F-score compared to other normalization
methods (F(3,542) = 6.98, p = 0.0001). The null hypothesis
is still rejected, due to the fact that the baseline slideshow
mode has been tested by different users on different datasets.
However, the error distributions have almost the same scale,
and the result still matches our initial expectations: the Tahoe
and Yosemite datasets exhibit lower mean error than the Nepal
and Tatras (see Figure 6 right).

Subject’s ability factor
We tested the per-subject mean differences using one-way
ANOVA. The test was unable to reject the null hypothesis
that the means of positional error ep do not vary significantly
between users (F(20,525) = 1.13, p = 0.31), which also hold
for the normalized positional error enp(F(20,525) = 1.75, p=
0.23). We further inspected the importance of factors that the
subject visited the place before, map proficiency, and map
usage frequency. None of them showed significant effect on
positional or heading error. In summary, we were not able to
prove any significant differences between users in terms of
positional and heading error.

Position Evaluation
Having normalized results for dataset difficulty, we can formu-
late the comparison of presentation modes as one-way repeated
measures ANOVA with the presentation mode as a within-
subject variable with four conditions. This way, the test can
account for performance differences between subjects. As the
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Figure 8. Left: comparison of dataset difficulty with respect to heading
error eh. Right: comparison of heading errors achieved by presentation
modes (S = slideshow, GS = GPS slideshow, PF = passive fly-through, VR
= immersive fly-through) on the easiest Tahoe dataset.

numbers of photographs differ between datasets, we first cal-
culate mean per-subject and method. This way, we have one
measurement per subject and method. We formulate the null
hypothesis that means of normalized positional error enp do
not differ significantly between methods. The null hypothesis
was clearly rejected (F(3,375) = 8.13, p < 0.001). Post-hoc
analysis reveals that the baseline presentation mode has signif-
icantly larger mean normalized positional error enp, than GPS
slideshow (p < 0.001), interactive fly-through (p = 0.034),
and passive fly-through modes (p = 0.009, see Figure 7).
There is no significant difference between the GPS slideshow,
passive fly-through and interactive fly-through according to
our data and this test (p >= 0.434) for all remaining com-
binations). In summary, it seems the positional information
contained in GPS slideshow, interactive fly-through, and pas-
sive fly-through modes helps users with location estimation.

Heading Evaluation
We were not able to find any significant differences between
presentation modes for heading error eh. Significant differ-
ence was found between the Tahoe and Nepal datasets using
one-way ANOVA (F(3,542) = 4.23, p = 0.0057), supporting
our expectation that the Tahoe dataset is easier than Nepal
(and according to Figure 8 left probably the easiest among all
datasets). Our data suggest it is fairly difficult to understand
what the camera is looking at in a photo and then mark it
on a map. The only dataset where the orientation exhibits
some tendency is the easiest Tahoe dataset, where the passive
fly-through has the lowest mean heading error and interac-
tive fly-through has second lowest (see Figure 8 right), how-
ever, these differences are not statistically significant. Other
datasets seemed to be too difficult for heading estimation as
the all the methods exhibited similar variance and mean across
the remaining datasets, probably due to large random error. In
summary, on the easiest Tahoe dataset, the passive fly-through
and the interactive fly-through seem to have marginally lower
orientation error than remaining two modes of presentation.

Presence Evaluation
We included a presence questionnaire to evaluate how suc-
cessfully the user is immersed by each presentation mode. To
reduce the time of the experiment, we tested just two modes
of presentation—the GPS slideshow, and the interactive fly-
through on a randomly selected half of our participants. For
this evaluation, we use the SUS presence questionnaire [39],
because of its relative compactness. As a first measure, we

calculate number of high responses (6, 7) for each presen-
tation mode—7 for interactive fly-through, and 6 for GPS
slideshow (higher is better). We also calculate mean and stan-
dard deviation of scores for both methods: the interactive
fly-through is 3.94±1.40, and GPS slideshow is 3.29±1.68.
We can see that the interactive fly-through is better than the
GPS slideshow, however, one-way ANOVA does not find sig-
nificance. In summary, the interactive fly-through seems to
exhibit slightly better scores in terms of presence compared to
the GPS slideshow.

In the post-test questionnaire, we asked users whether they
think that the terrain model (passive fly-through or interactive
fly-through modes) helped them to create a better idea about
the area of the dataset. The terrain model was helpful for
7 participants, 8 participants thought that the terrain model
helped them roughly the same as the GPS slideshow, and
6 participants replied that the GPS slideshow helped them
more.

Enjoyment
We asked users to identify which method was the most en-
joyable. 17 participants preferred the interactive fly-through
the most. They liked being able to look in the direction they
were interested, and that they could control the speed of flight
using the controller. Two participants preferred passive fly-
through the most. The reason was that the VR did not suite
their taste and they felt a little bit disorientated after the task in
VR, but they liked the possibility of seeing the pictures aligned
in the virtual terrain model. Two respondents preferred GPS
slideshow the most, since they felt it has been the most helpful
to fulfill their task. In summary, the interactive fly-through
is the most enjoyable mode of presentation according to our
evaluation.

Discussion
We have measured the subjects’ ability to estimate camera
position and orientation of a previously unseen photograph
based on what they learned from the presentation. We further
evaluated the subjects’ enjoyment of different presentation
modes and the sense of presence they confer. The use of
four datasets of different difficulty posed a challenge in the
evaluation, since we needed to normalize positional errors
in order to compare the differences between the presentation
modes.

The results suggest that the GPS slideshow is likely the best
mode for the position estimation task. We suspect that this
is because the mode of presentation—markers on a map—is
so close to the evaluation task that the effect of recall may
dominate that of the actual sense of spatial orientation. The
use of the same modality then leads to marginally better results
over passive fly-through and interactive fly-through.

According to our measurements, it seems that the length of the
fly-through and terrain complexity affect the learning effect of
the interactive fly-through. For a short and easy trip, such as
in the Tahoe dataset, the interactive fly-through scored slightly
better than GPS slideshow in terms of position and heading,
but on more complicated datasets, such as the Nepal, the



GPS slideshow performed better. This suggests that users get
confused when watching large, complicated presentations.

In terms of enjoyment, the interactive fly-through mode was
preferred by 17 out of 21 participants. The main listed reason
was the possibility to freely look around. The presence evalu-
ation also suggest that the users feel more immersion in this
mode than in the GPS slideshow.

Based on these results we believe that while the GPS slideshow
is somewhat better for the quantitative tasks, as it can directly
display the queried information, the immersive modes con-
vey an experience closer to that of actually doing the hike
in the real-world space. In fact, we suspect that if we had
included a real-world hike as a mode of presentation, the users
would face similar issues in the evaluation as they did with
the interactive fly-through, as the sense of spatial propriocep-
tion acquired by first-hand experience may not necessarily
map to an accurate knowledge of spatial layout. It would be
possible to verify this analogy with an experiment where we
would have participants view an immersive fly-through and
then ask them to retrace the same path in real-life without the
use of navigation aids, but an experiment such as this would
be difficult to perform and ethically problematic.

CONCLUSION
We present a complete geo-registration pipeline for collections
of images from hiking trips, which is capable of performing
3D reconstruction and scene geo-registration for expansive
outdoor scenes without requiring speciality capture hardware.
From this geo-registration, we create an immersive photo fly-
through presentation where the images are overlaid on a virtual
model of the terrain. We produce these presentations for four
datasets from different geographical areas, with both a passive
variant based on viewing these images in Google Earth and an
interactive variant in a VR viewer.

Further improvements of our pipeline—e.g. optimization of
the photo augmentation step by estimating how many and
which photographs to download—could be interesting future
work. Moreover, projecting the photograph texture onto the
terrain during the fly-through is another direction worth ex-
ploring.

We compared our immersive presentation modes with two
more traditional ones—a slideshow and a slideshow accom-
panied by a map—in a user study, where we measured user
enjoyment, feeling of presence in the outdoor space, and the
ability to understand the location and orientation of images in
space. We found that in terms of spatial understanding, our
modes performed significantly better than a pure slideshow
and on par with the GPS slideshow, while the VR-based inter-
active fly-through conveyed a superior sense of presence and
was preferred as the most enjoyable by the majority of users.

We hope our immersive trip reports can be useful both in
private settings, to simply share the experience of a trip, as
well as in public where they could be used to share e.g. trip
instructions from users familiar with the area to the users who
have yet to visit.
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