GeoPose3K: Mountain Landscape Dataset
for Camera Pose Estimation in Outdoor Environments

Jan Brejcha®*, Martin Cadik®

@ Faculty of Information Technology,
Brno University of Technology,
Bozetéchova 1/2 612 66 Brno, Czech Republic

Abstract

We introduce a new dataset called GeoPoseé’KEl which contains over three thousand precise camera poses of mountain
landscape images. In addition to camera location and orientation, we provide data for the training and evaluation
of computer vision methods and applications in the context of outdoor scenes; synthetic depth maps, normal maps,
illumination simulation and semantic labels. In order to illustrate properties of the dataset, we compare results achieved
by state-of-the-art visual geo-localization method on GeoPose3K with results achieved on an existing dataset for visual
geo-localization. So as to foster research of computer vision algorithms for outdoor environments, several novel future
use-cases of our new GeoPose3K dataset are proposed.
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Figure 1: GeoPose3K dataset: for each mountain land-
scape photograph, the dataset contains (in reading order)
its GPS coordinate and camera orientation, distance from

the camera in meters, normals w.r.t. camera, normals
w.r.t. cardinal direction, semantic labels and approximate
illumination during the day (here shown at 5am, 12pm and
8pm).

1. Introduction

Camera location and orientation are key attributes of
every photograph. Many non-conventional applications
can be developed, with a known location and the orienta-
tion of a camera. These include computational photogra-
phy and image enhancement techniques [I} 2], realistic tex-
ture synthesis [3], photographs visualization [4, [5], scene
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understanding [6], and image retrieval based on view di-
rection [7].

However, geo-location (geographical coordinates) and
camera poses are unknown for many photographs. While
many image capturing devices track geo-location via Global
Positioning System (GPS), it may be imprecise in various
environments (e.g. mountains), forgotten or unknown for
older photographs. Camera orientation can also be esti-
mated with onboard sensors, but in practice it is unknown
for a majority of photographs. Visual geo-localization aims
to assess the camera location solely from image content.
This problem is very challenging, particularly in moun-
tainous scenes, and has been the subject of several studies
in the last two decades [8], [0} [T0L [IT] 12} T3], 14} 15 16} 17].
Such methods are often built from blocks that need to be
trained in a supervised manner. These are mostly detec-
tors of various features like horizon lines, silhouette edges,
keypoints, semantic segments (forests, glaciers, bodies of
water, rocks, etc.), depth, normals and the direction of sun
rays. Moreover, the evaluation and comparison of current
methods is the key for further research. Success of all these
tasks depends on convenient datasets containing enough
training and evaluation samples. Unfortunately, the num-
ber of public datasets for visual geo-localization and pose
estimation outdoors is very limited. We are aware of only
two datasets for visual geo-localization (CH1 [13], CH2
[17]) and a single dataset for camera orientation estimation
[18] in mountains.
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Contributions. We present a new dataset GeoPose3K
which addresses three main issues with existing datasets
for camera pose estimation outdoors: (I) a small amount of
images with known ground truth position, (II) an absence
of full camera orientation and (IIT) an absence of metadata
for the training and evaluation of feature detectors and fur-
ther applications outdoors. The dataset GeoPose3K con-
sists of more than three thousand photographs collected
mainly from the photo sharing site Flickr.com. All pho-
tographs originate in the Alps region, which is the highest
mountain range in Europe. For each image all camera pose
parameters (GPS position, FOV (field-of-view), full orien-
tation) are provided. The camera pose parameters were
assessed with an image-to-model matching technique and
manually verified. In order to enable the training and de-
velopment of future approaches for outdoor environments,
we provide various synthetic data per image: depth map,
normal map, simulation of illumination during the day,
and semantic labels. One sample image from our dataset
with corresponding synthetic data is shown in Fig.

A semi-automatic method for dataset acquisition is in-
troduced. We have improved the camera orientation ap-
proach of Baboud et al. [19] by incorporating weights into
the original Alignment Metric and by training a special-
ized mountain silhouette detector. Using this method we
have built a procedure for refining noisy estimations of a
camera position and FOV. In order to illustrate properties
of GeoPose3K, baseline measurements of state-of-the-art
horizon-based localization method is introduced [17].

2. Related Work

We are not aware of any other dataset that provides
precise camera poses for arbitrary outdoor images from a
photo sharing site. Furthermore, we are not aware of any
similar mountain dataset that provides data for training
and evaluating feasible features for outdoor — like depth,
normals, illumination changes during the day and semantic
segments. However, some datasets for visual geo-localization
have been published recently.

Geo-localization datasets for urban environments. Visual
geo-localization, place recognition and camera pose esti-
mation is a widely studied topic closely connected with
data from social media [20]. The topic gained a lot of in-
terest in the context of urban environments, where image-
based methods proved to be a successful solution [21] 22|
93, 241 25 26, 27, 28, 29, [30].

While it is relatively easy to obtain a lot of user-tagged
images from services like Flickr [31] [32], the quality of an-
notations (or GPS tags) from these sources is uncertain.
This issue is alleviated by using street level imagery ob-
tained by a mapping vehicle [33], or Google Street View
images [27] [34].

Geo-localization datasets for matural environments. The
geo-localization approaches for mountainous terrain are

mainly based on local features extracted from a horizon
line |15 16l I7], or multimodal measurement fusion [I4].
The camera orientation estimation problem was approached

by matching edges in the query image and synthetic panorama

of Baboud et al. [19] and later using the smartphone sen-
sors of Porzi et al. [18].

Porzi et al. [I8] also published the Venturi Mountain
Dataseﬂ with annotated camera poses for video frames. It
contains 3,117 video frames from 12 video sequences. For
this reason the Venturi dataset contains a lot of similar
images: while it is suitable as a benchmark for camera ori-
entation estimation, it is not a suitable benchmark for geo-
localization problems. An image-based dataset from the
Alps region called Alps100K was collected by Cadik et al.
[35]. It was downloaded from Flickr by querying hill names
and filtering out evident outliers using CNN. The pho-
tos in this dataset contain a GPS position, elevation and
FOV. However, the dataset does not provide camera pose
parameters and the provided ground truth geo-locations
were not verified and thus might be noisy. Datasets for
visual geo-localization called CH1 and CH2 were provided
by Saurer et al. [I7]. Both datasets contain in total a
thousand images with known ground truth GPS location
and FOV, but camera orientation is not provided. Seg-
mentation of the sky and foreground terrain is provided
for 203 images in the CH1 dataset.

RGB-D datasets. Since we provide additional synthetic
metadata as depth and semantic labels, etc. (see Fig. ,
we also briefly overview works introducing existing datasets
containing similar data. Thanks to the ease of RGB-D
images acquisition using devices such as Microsoft Kinect,
many indoor RGB-D datasets exist [36]. Acquisition of
outdoor RGB-D datasets is more challenging, because the
depth range and resolution of depth sensors is limited.
Saxena et al. [37, B8] used a laser depth scanner with
a maximum depth of 81 m and resolution 55 x 305; Kitti
dataset [39] contains 3D point clouds collected by a LI-
DAR sensor. However, such approaches are unusable for
mountainous environments, where the depth of the scene
varies from several meters to hundreds of kilometers. An
option suitable for mountainous environments would be to
calculate depth from two stereo images, but the disparity
needed to obtain viable results would be prohibitive for
practical scenarios. We solve these problems by render-
ing the corresponding depth for each image from a DEM
(Digital Elevation Model).

Semantic segmentation datasets. Several standard datasets
for semantic segmentation exist [40] 41],[42, [43]. The meth-
ods and datasets for semantic segmentation are usually
generic — they contain a number of classes that are sup-
posed to cover various kinds of content. While existing
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datasets, such as Pascal-Context dataset [42] contain rele-
vant classes for mountainous areas — mountain, rock, tree,
grass, water, road, snow or sky, it does not provide moun-
tain specific classes — forest, glacier, cliff or moor. With
this motivation, we include synthetic semantic labels into
GeoPose3K dataset. We overlay the DEM with the 13
most relevant OpenStreetMap natural featuresEl and for
each image in the dataset render a corresponding synthetic
view containing the semantic labels (see Fig. [3)).

An approach to camera orientation estimation in out-
door scenes based on semantic segments was published by
Baatz et al. [44]. However, they used only four classes
— residential area, bodies of water, sky, and “everything
else”. Also, their dataset seems to only contain several
images and is not publicly available.

3. GeoPose3K Dataset

We introduce GeoPose3K, a dataset of images with
known parameters — field-of-view f, camera position: lat-
itude a, longitude o, elevation e, and camera orientation:
yaw «, pitch 8 and roll v. The dataset consists of two
main parts. The first part contains 339 images captured
and annotated manually (which is over 10% of the whole
dataset). For each image the GPS position was recorded
by its authors using a GPS sensor. Camera orientation
was found by selecting correct correspondences of the im-
age and the DEM in a way similar to Kopf et al. [2]. How-
ever, such manual collection and annotation is a lengthy
and tedious task. Therefore, the second part of the dataset
(2,772 images) was calculated using a semi-automatic algo-
rithm. The whole dataset consists mainly of images from
an online photo service. In addition, we also assessed ori-
entations for the CH1 dataset images which originally con-
tained only the camera position and field-of-view.

3.1. Camera Pose Assessment

We used photographs with a known FOV and GPS po-
sition P = (f, a, 0, e) from the Alps100K dataset by Cadik
et al. [35]. These photographs were originally acquired
from Flickr online sharing service, so we assume the pa-
rameters P to be known, but noisy. Our goals were: (I) for
each image I recover a correct elevation and estimate cam-
era orientation O = (a, 8,7) so that a complete camera
pose C(I) = (P,0) could be assembled; (IT) classify each
recovered camera pose as viable or incorrect; and (III) re-
fine parameters of each viable camera pose C. We assume
the camera pose of a given image to be viable, if a human
user observes obvious correspondence between the query
image and the synthetic image rendered from DEM with
given camera pose parameters (see Fig. . It should be
noted that this does not necessarily mean the camera pose
is 100% correct; for this reason we pass viable images to the
refinement process. An incorrect camera pose means there

3http://wiki.openstreetmap.org/wiki/Key:natural
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Figure 2:
camera pose (left), refined camera pose
and incorrect camera pose (right).
tain silhouettes
age. Image credit: left and middle image -
Flickr.com user Michael Holtrop: https://www.flickr.
com/photos/bartje_assen/2851555201/, right image
— Flickr.com user Bossi: https://www.flickr.com/
photos/thisisbossi/2973222425/

is no obvious correspondence to the DEM; images with an
incorrect camera pose are discarded. Images that passed
the refinement process were included into the dataset with
the best camera pose we found.

Method Outline. Since we know the camera position (a, 0)
for each image, we recover the elevation simply by querying
the DEM at the position. For camera orientation estima-
tion an existing approach by Baboud et al. was used [19].
We propose an improvement of their Alignment Metric
for camera orientation estimation, and show that it per-
forms better than the baseline. We have used the improved
Weighted Alignment Metric to automatically estimate the
camera pose of 30K photos from the Alps100K dataset.
We manually verified the estimated camera pose of each
photo. In case the found camera pose was viable, we added
the photo into a list of candidates.

For each photo in the list which consisted of more than
3K candidates we sampled several hypotheses of the FOV
and their position around the original FOV f and posi-
tion (a,0). The position is sampled in order to mitigate
the positional error introduced by an imprecise GPS tag.
The FOV is sampled in order to eliminate possible inaccu-
racies of the recorded focal length or camera sensor size.
The FOV might be incorrect due to several factors. First,
the image might be cropped (many images in the Alps100K
dataset contained artistic borders, which were cropped au-
tomatically). Secondly, the FOV might be wrongly cal-
culated due to an incomplete list of cameras and their
sensor sizes. Finally, the values stored in EXIF might
be manipulated by third party software before sharing it
online. One should note that moving the camera while
keeping the original FOV fixed is not equivalent to adjust-
ing the FOV with a fixed position. According to Hartley
and Zisserman [45], 3D scenes containing objects near the
camera are perspectively distorted, hence moving the cam-
era towards/backwards a nearby mountain will change the
perspective distortion, while a decrease/increase of FOV
(zoom in/out) does not affect it.

For each sampled hypothesis we ran the camera pose
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estimation method again and manually chose the camera
pose that visually matched the DEM best. Only if the re-
sulting camera pose matched the DEM precisely (we toler-
ate error up to several pixels), it was then added into the
dataset.

3.1.1. Alignment Metric

For each possible camera orientation («, 3, ), the orig-
inal method by Baboud et al. [19] calculates the image-
to-DEM matching score using edges from a query image
and silhouettes extracted from the panoramic rendering of
a digital terrain model. This score can be used to select
an optimal camera orientation for a specific camera po-
sition; however, it does not reflect the confidence of the
found camera pose as its absolute value varies. The found
camera pose has to be visually inspected by a human user
in order to recognize a wviable or incorrect result. A de-
tailed description of the Original Alignment Metric and
our improved Weighted Alignment Metric can be found in
Append A

3.1.2. Candidate Refinement

Images, for which the Weighted Alignment Metric was
able to recover a wiable camera pose, were added into a
list of candidates. The camera pose could be contami-
nated due to a combination of many factors: an imprecise
GPS tag, imprecise FOV, imprecise DEM, and the dis-
tortion of a query image. Since there was a high number
of images with wviable, but contaminated camera pose af-
ter the camera pose estimation process, we further refined
contaminated camera poses.

We hypothesised a position with 8 samples regularly
placed around the original position (a,0). Four samples
were placed in the corners of a smaller square with a side
of 500 m, and four samples were placed in the corners of
a bigger square with a side of 1000 m. The original posi-
tion (a,0) is located in the center of both nested squares.
For each new position we have also sampled FOV f of
the camera. The minimum value of FOV was f — 0.1f,
the maximum f + 0.1f and there were in total four steps
sampled linearly between the minimal and maximal value.
We ran our Weighted Alignment Metric on each sampled
position. In this way we obtained thirty-two new camera
poses for each candidate. Finally, these camera poses were
verified by the user. In case the best camera pose of the
candidate was precise enough (the alignment error was not
bigger than several pixels, see middle image in Fig. , the
new refined camera pose was added into the dataset.

The process of candidate refinement was very demand-
ing on computational resources and time. The alignment
of all sampled positions and FOV’s took three weeks on
seven computers equipped with Intel Core i3-4360 CPU
and NVidia GTX 980 GPU. In addition, it took one man-
month to manually assess the estimated camera poses.

Figure 3: Example of OpenStreetMap semantic segments
provided per dataset image. Left: original photograph.
Middle: terrain metadata from OpenStreetMap [46] ren-
dered on the digital elevation model. Right: original im-
age overlaid with terrain metadata from OpenStreetMap.
Color coding;: , water, forest, , , other.

8.2. Synthetic Data Acquisition

Each image I in the dataset is provided with a camera
pose C(I) = (f,a,0,e,a,3,7). This camera pose allowed
us to support the dataset with additional synthetic data
rendered from DEM.

Depth. A depth map was acquired by pixel-wise raycast-
ing and the measuring of the distance from the camera
to the first intersection with scene geometry. The accu-
racy of the depth map is dependent on the accuracy of the
DEM; our DEM consists of samples spaced by 24 meters
and the DEM was obtained from the viewfinderpanoramas

websitd

Normals. We produced two types of normals. Normals
w.r.t. the camera were calculated relatively to the camera
position. Normals w.r.t. cardinal direction were calcu-
lated with regard to a world coordinate system. Original
normals of the surface n € R3, where n,,ny,n, € (—1,1)
are encoded into the RGB image n;gb = 0.54+0.5-n, where
My, g, 1y, € 0, 1).

Illumination. Tlumination approximation was simulated
hour by hour from 4 am till 9 pm on 215 June, when the
days are the longest during a year. The illumination sim-
ulation was calculated using a local illumination model, so
that it does not contain casted shadows.

Semantic Segments. We make use of publicly available
metadata from OpenStreetMap [46]; however, other sources
(e.s. NASA Visible Earth’] or USGS Land Coverfl) are
feasible too. More specifically, we render 13 natural and
physical land features from OpenStreetMap natural fea-
ture setﬂ bare rock, cliff, fell, forest = wood, glacier,
grassland, moor, scree, shingle, sinkhole and water. Each
feature is mapped on one color layer in a geo-referenced
texture. The texture is subsequently mapped on the sur-
face of our 3D terrain model (see Fig. [3| middle). Assum-
ing the image (e.g. Fig. [3 left) is correctly aligned with

dhttp://viewfinderpanoramas.org
Shttp://visibleearth.nasa.gov/view.php?id=61004
Shttp://www.usgs.gov
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the model, we can project the texture onto the image us-
ing the virtual camera while correcly accounting for the
visibility thanks to the 3D terrain model. This results in
the final pixel-wise semantic labels (Fig. [3] right).

3.3. Dataset Properties

The GeoPose3K dataset consists of two main parts,
collected manually and semi-automatically. The first part
contains 339 images, which were collected and annotated
manually. Since this was a tedious task, collecting more
dataset samples in this way was unfeasible. The second
part of the dataset contains 2,772 images for which the
camera parameters were optimized using Weighted Align-
ment Metric combined with hypotheses sampling and man-
ual selection of the best candidate, as was described in

Sec. B.11

3.8.1. Potential Bias for FEvaluation of Camera Orienta-
tion Estimation Methods

The semi-automatically collected part of the dataset
was gathered with the help of a method by Baboud et
al. [19]. For this reason, methods based on edge features
might be potentially privileged over algorithms based on
different principles. This bias must be taken into account
when using GeoPose3K for the evaluation of orientation
estimation methods. However, for evaluating problems
based on different features, the usage of the dataset is
valid. We illustrate this property in a benchmark evaluat-
ing a state-of-the-art horizon-based geo-localization method
by Saurer et al. [17] in Sec. 4l In our evaluation we show
that the dataset difficulty on the localization task is on par
with datasets collected solely manually (CH1, CH2).

For evaluating methods similar to the method by Baboud
et al. [19], a manually collected part of the dataset (339
images) shall be used. Since the selection of the images
in this part was not affected by any algorithm, there is no
limitation on which methods can be evaluated using this
part of the dataset.

3.8.2. Statistics

The majority of images in the GeoPose3K dataset orig-
inate from Alpsl00K dataset. The GeoPose3K dataset
consists of images, which contain an accurate GPS tag,
and capture a reasonable portion of the mountain scene
so that they might be registered with the terrain model.
This definition restricts the set of images in which we can
generalize our conclusions on. However, the GeoPose3K
dataset has adequate coverage by users — two thousand
users have a single photograph in the dataset, around a
hundred and fifty users have two photographs, and only a
single user has twelve photographs in the dataset, which is
the largest number of photographs created by a single user.
The majority of images in the dataset were taken between
2007 and 2014. Both the user and year distributions ex-
hibit some degree of similarity to the Yahoo Flickr Creative
Commons 100 Million dataset (YFCC100M) [32]. We em-
ployed a two-sample Kolmogorov-Smirnov hypothesis test

with a null hypothesis: the GeoPose3K and YFCC100M
distributions do not differ significantly. For the user dis-
tribution, the two-sample Kolmogorov-Smirnov test failed
to reject the null hypothesis (D(6487,12) = 0.3042,p =
0.18). For yearly distribution, the same test clearly re-
jected the null hypothesis (D(35,35) = 1,p < 0.001).
From this we can conclude that year’s distributions dif-
fer significantly, but we were not able to prove the same
for user distribution. This fact illustrates that the Geo-
Pose3K and YFCC100M share some degree of similarity,
but GeoPose3K is a more specific subset than YFCC100M.
In spite of the above-defined restrictions, the GeoPose3K
dataset enables us to speculate about the following im-
portant questions. What cameras are the most common
in the mountain environment, and which of them are the
best candidates for visual geo-localization? Which focal
lengths are the most successful for matching mountain im-
ages? Are people really taking photographs with a zero
roll angle? Which orientation at what time is the most fa-
vorite? In order to answer these questions and to illustrate
the properties of the GeoPose3K dataset, we measured
several statistics.

Geographical Distribution. The distribution of geo-locations
of photographs in the GeoPose3K dataset is visualized in
Fig. [4] (left). The dataset was built from Alps100K im-
ages and hence, the photos are distributed over the whole
Alps region. However, the photos are not distributed uni-
formly — the areas of tourist interest like Switzerland and
northern Austria contain more images.

Cameras. A full list of cameras is due to its excessive size
attached in Appendix, in Table The most frequent
camera in the dataset is Canon DIGITAL IXUS 860 IS
(around 8% of dataset images). Interestingly, the first
and third most frequent cameras in our dataset are not
equipped with a built-in GPS sensor; according to this
fact at least 10% of images in the dataset obtained their
original GPS coordinates by a third-party logger, or were
geo-tagged manually.

Focal Lengths. A histogram of focal lengths recalculated to
35mm equivalent is visualized in Fig. 4] (middle). Shorter
focal lengths are common in mountain landscape images
(Alps100K) and the measured distribution of GeoPose3K
shows this bias as well.
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Figure 4: Dataset statistics. Left: distribution of photo
locations in GeoPose3K dataset. Middle: histogram of
focal lengths in the dataset. Right: average camera roll.



Awverage roll. People usually aim to level their photos with
the horizon line. Accordingly, the histogram of roll an-
gles in Fig. [4| is centered around zero. However, keeping
the camera level may be difficult in the mountains and
some shots are clearly rotated. This justifies that the geo-
localization methods need to be optimized for a camera
roll as well.

Time-Orientation Correlation. According to Fig. [5|(right)
photos in the GeoPose3K dataset were taken most fre-
quently around 2pm with a heading of 90°. In general,
photos were photographed mainly between 10am and 4pm,
and the favorite headings ranges are between 0°-120° and
170°-300°.

= automati
= manual

= automati
—= manual

0 0
0 5 10 15 20 25 30 5
FOV error [°]
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0 0.20.4 0.6 0.8 1.0
GPS error [km]
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Figure 5: Dataset statistics. Left: histogram of GPS error
distribution. Center: histogram of FOV error distribution.
Positions and FOV’s are refined using our semi-automatic
method which are drawn in blue, while the positions re-
fined manually are in brown. Right: time/orientation cor-
relation visualization.

GPS and FOV error. We measured GPS and FOV errors
based on the refinement (Sec. we employed. We
measured geo-distance between the original and refined
GPS position for each image, and plotted a histogram
of these errors (see Fig. [5| on the left). We measured a
similar histogram of FOV errors (Fig. [p| in the middle),
based on the difference between original and refined FOV.
According to our measurements, there are discovered dis-
crepancies in GPS values. The images sometimes exhibit
noisy GPS tags, probably due to manual geo-tags, bad re-
ception of a GPS sensor, or the fact that cameras have
their GPS refresh rate set to a long time interval. On the
contrary, the FOV error histogram peak is near zero, re-
flecting the fact that the original fileds-of-view of photos
in the dataset were nearly correct. Imperfections in FOV
up to 1°-2° discovered by the manual annotation are most
probably caused by tiny inaccuracies of the digital eleva-
tion model or by a very small GPS error. Therefore, the
FOV error within a small margin of 1°-2° is assumed to be

correct.
Edge accumulation. The GeoPose3K dataset allows us to

analyze properties and discover the importance of the query
edges. We did the following calculations on a uniformly
sampled grid of 9x9 samples with a 0.001° resolution in
both N-S and W-E directions. From each grid location
we have rendered the synthetic silhouettes and matched
them to the query image edges. We have incremented 1 to
all pixels in the accumulator containing a synthetic silhou-
ette, which contributed positively to the matching score.

10—

We ran such an evaluation for every position in the grid
and summed up the accumulators in order to obtain one
accumulated image for a query. Example of such an accu-
mulated image can be found in the Appendix in Fig.

In order to analyze the importance of edges in all im-
ages in the dataset, we have created the average accumu-
lated edge map (Fig. @ left). The most populated one is
the central area of an image with a slight bias towards the
bottom of the frame. Similarly, we have created an average
accumulated cylindric panorama image, where each image
has been accumulated with respect to its original camera
orientation (Fig. |§|, right). As one would expect, the area
around the horizon is the most populated; however, the
silhouettes off +10°seem to be of similar importance. The
*image further exhibits a good GeoPose3K dataset cover-
age of camera orientations.
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Figure 6: Edge accumulation.
age from all accumulated images.
panorama image.

4. Experiments

We use the GeoPose3K dataset to extensively eval-
uate the state-of-the-art method by Saurer et al.  [17]
for horizon-based visual geo-localization in mountains. By
this evaluation we bring deeper insight into the dataset
properties; and according to our measurements, the diffi-

culty of the new GeoPose3K dataset for visual geo-localization

is similar to the difficulty of the original CH1 [I3] and
CH2 [17] datasets. However, GeoPose3K allows us to eval-
uate the baseline using more photos covering a larger area
than the original datasets. For this evaluation, the vastest
area ever issued — our largest experiment deals with area
more than twice the size of the original area reported by
Saurer et al. [I7]. In addition, GeoPose3K also allows
us to evaluate the camera heading accuracy. The eval-
uated method [I7] is capable of camera heading estima-
tion; however, it had never been quantitatively evaluated
before, because there was no suitable dataset containing
camera orientations. Furthermore, we have evaluated geo-
localization performance using three fully automatic hori-
zon line extraction methods to illustrate that the auto-
matic horizon line extraction is still a challenging problem.

4.1. Setup

We have reimplemented the state-of-the-art method by
Saurer et al. [I7] and measured its performance on Geo-
Pose3K. The method utilizes a database of densely sam-
pled horizon lines from a DEM to retrieve locations given
a query horizon line. We have extracted a database of



synthetic horizon lines that covers 86 000km? (red area
in Fig. — GP1), which is more than twice the size
the area used in the original paper [I7] (40 000 km?). We
have sampled the area of interest in both N-S and W-E
directions with a resolution of 0.001°. Samples in N-S and
W-E directions are 111m and 78 m far from each other,
respectively.

The original method is based on the bag-of-words re-
trieval adapted to horizon line contours. The approach al-
lows us to retrieve the approximate heading and position
of the camera using a voting scheme. We have used a vot-
ing for location and direction with 2.5° and 10° descriptors
and 3° directional bin size, which seemed to be the best
choice according to the results presented in the original
paper. The evaluation method proposed by Baatz et al.
is used [I3]; and the distance between a candidate and a
ground truth location is measured, assuming the location
is correct if the distance is smaller than 1km. The cumu-
lative percentage of correctly localized images given top-k
candidates is then plotted.

4.2. Automatic Horizon Line Detection

The baseline localization method requires a horizon
line as a query input. In order to measure performance
of the method on GeoPose3K dataset, we have experi-
mented with several algorithms for automatic detection of
horizon lines.

Automatic Labeling Environment (ALE) [{77]. ALE is an
energy minimization-based semantic segmentation frame-
work adopted for sky extraction by Saurer et al. [I7]. Specif-
ically, the energy is predicted by a pixel-wise classifier
trained on contextual and superpixel feature representa-
tions. Multiple bag-of-words representations over the ran-
dom set of 200 rectangles, and superpixels are used for
the contextual and superpixel parts, respectively. The
segmentation is obtained by minimizing the energy using
dynamic programming (DP). We have implemented the
algorithm [I7] into the Automatic Labeling Environment
(ALE), with the personal advice of the authors [47]. As
with the original paper [I7] we set the number of bag-
of-words clusters to 512 and trained ALE using the CH1
dataset [17].

An Edge-Less Approach to Horizon Line Detection [{§].
This approach also uses machine learning and dynamic
programming to extract the horizon line from an image.
Specifically, each pixel is assigned a classification score ex-
pressing the likelihood of the pixel belonging to the hori-
zon line. As suggested by the authors, we have used the
SVM classifier trained by their training set [48]. Assum-
ing that the horizon line extends from left to right (not
top to bottom), the horizon line is finally extracted using
DP, maximizing the sum of classification scores.

Fully Convolutional Networks (FCN) [49]. FCN achieve
state-of-the-art results in semantic segmentation. For the
given input image, the fully convolutional network pro-
duces a correspondingly-sized semantic segmentation im-
age. We have experimented with several semantic segmen-
tation models (FCN-Xs) and selected the FCN-8s (three
stream, 8 pixel prediction stride), which gave us the best
results, for further evaluation. We have used a model
trained for the 21-class (including background) PASCAL
VOC segmentation task and finetuned for sky-foreground
segmentation using the CH1 dataset [13].

4.8. Localization Performance

We have evaluated the localization performance using
several scenarios. In order to illustrate the performance
of our implementation of the baseline method, we mea-
sured the performance on the original CHI dataset us-
ing the original CHI horizon lines (CHI area, CH1 data,
7(b)). Since horizon lines were not provided with the
CH?2 dataset, we measured the performance of the CH2
dataset using query horizon lines obtained by automatic
segmentation of query images using three different meth-
ods (CH2 area, CH2 data, . In order to study the
difficulty of CH1, CH2 and GeoPose3K datasets, we have
also evaluated the method on the CHI and CH2 areas us-
ing GeoPose3K data (CHI area, GeoPose3K data, [7(c)]
CH?2 area, GeoPose3K dabtau7 respectively). Further-
more, we have studied the total performance of the method
using the GeoPose3K images inside the largest GPI area,
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Figure 7: (a) trained localization areas:

, CH2 dataset area, our GP1 area (largest); re-
sults of horizon-based localization on (b) CHI dataset:
red — 2.5° features, blue — 10° features, green — combina-
tion of both 2.5° and 10° features; (c) GeoPoseSK data
in the CH1 dataset area (yellow rectangle) using three
automatic segmentation techniques — ALE (green), FCN
(blue), Edge-Less (red).

CH1 area, CHI data (F' ig,. We evaluated the perfor-
mance of our implementation on the original CHI dataset
[17]; and used a database of horizons inside the yellow rect-
angle (Fig. and 203 query images from CHI dataset.
Like the authors of the baseline method [I7], we visualized
performance for 2.5° features, 10° features and a combina-
tion of both. The obtained performance is a bit worse



than in the original publication. We see the main reason
is in the data we use — the original method uses non-free
DEM from the Federal Office of Topography swisstopﬂ
which contains one sample per 2m?. We use publicly avail-
able DEM from viewfinderpanoramas EL which contains
one sample per 576 m?.

CHI area, GeoPose3K data (Fig. [7(c)). In this experi-
ment we used 865 query images from GeoPose3K located
inside the CHI area — yellow box (Fig. . The frac-
tion of correctly localized images is lower than in Fig.
This might be caused by the lower accuracy of the hori-
zon extraction algorithms (ALE, FCN-8s, Edge-Less) com-
pared to the ones used in the original CHI dataset (ALE
guided by user). This assumption is supported by the fact
that the performance of the experiment in the CH2 area

(Fig. and [8(b)) is similar for both CH2 and Geo-
Pose3K data.

CH2 area, CH2 data (Fig.[8(a)). Here we have used 949
query images from CH2 dataset located inside the CH2
area — blue box in Fig. Performance of this exper-
iment can be directly compared to the CH2 area — Geo-
Pose3K experiment (Fig. , since query horizon lines
for both sets were extracted by the same (automatic) tech-
niques. According to the results, the method performed
little bit worse on CH2 dataset.

CH?2 area, GeoPose3K data (Fig. , For this experi-
ment we used 791 images from GeoPose3K dataset, which
were located inside the CH2 area — blue box in Fig.
The results are in agreement with other experiments; per-
formance of the segmentation techniques is consistent with
other experiments. ALE seems to be the best method
for horizon line segmentation, FCN and the EdgeLess ap-
proach scored similarly.

GP1 area, GeoPose3K data (Fig. . The GeoPose3K
dataset covers almost the whole Alps (Fig. |4). However,
training such a large area for the horizon-based localiza-
tion was not feasible due to hardware limitations. For this
reason, we trained the GPI area (red area on (Fig.[7(a)),
which is the largest area used for horizon-based localiza-
tion so far (86 000km?). In this area we evaluated the
method using a subset of 1151 images from GeoPose3K,
which fit into the GP1 area. The results of this exper-
iment are in Fig. The performance is only slightly
worse than in previous experiments (CHI, CH2 areas,

GeoPose3K data). This is expected, since the geo-localization

area is more than twice the size of the CHI and CH2 areas.
From this result it seems that the geo-localization perfor-
mance of the horizon line-based localization method [I7]
decreases only marginally with the increasing size of the
geo-localization area.

8https://www.swisstopo.admin.ch
9http ://www.viewfinderpanoramas.org
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Figure 8: results of horizon-based localization using three
automatic segmentation algorithms — ALE (green), FCN
(blue), Edge-Less (red); (a) CH2 dataset using automatic
segmentation; (b) CH2 dataset area, using GeoPose3K
images, (c) largest GP1 area using GeoPose3K images.

4.4. Orientation Performance

Since GeoPose3K also contains camera orientation for
each image, we evaluated the error of estimated heading
(Fig. E[) To our knowledge, this is the first such evalua-
tion of heading estimated by the method of Saurer et al.
[I7]. For each correct candidate of all queries we mea-
sured the difference between the heading of the ground
truth image and the estimated heading. From Fig. [9] we
can see that the orientation error peaks around 0° and er-
rors larger than several degrees are negligible. This result
supports our expectations: for a correct location, the al-
gorithm is able to find a correct heading estimate up to
a small error of several degrees. A deeper analysis of the
heading estimation error can be found in Table[l] We mea-
sured the heading error on all three geolocalization areas
— CH1, CH2 and GP1, using GeoPose3K data. Mean and
standard deviation is calculated from the absolute value of
the difference between the estimated orientation and the
ground truth. Quantiles are calculated from the difference
between the estimated orientation and the ground truth.
The statistics correspond with Fig. [0} In the CH1 area,
the Edge-less segmentation method achieved the best re-
sult; however, this is not consistent across other areas. It
is likely that CH2 and GP1 area contains more difficult im-
ages, since the standard deviation is worse on CH2 than
on CH1. In the largest GP1 area, the FCN8-s segmen-
tation method has the lowest heading error according to
the reported mean and standard deviation. On average,
the lowest mean error in heading accuracy was achieved
by ALE, which also has other average statistics that are
slightly deviated from the lowest observed values; how-
ever, the difference is not significantly different from other
methods.

4.5. Experiments Summary

In this section, we provided experimental results of the
state-of-the-art horizon-based visual localization technique
by Saurer et al. [I7]. We evaluated both localization
and heading estimation performance. For evaluation, we
used original CH1 and CH2 datasets and compared the
achieved performance with our GeoPose3K dataset. We
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CH]1 area, GeoPose3K, 865 images
method mean std median q = 0.95 q = 0.05
Edge-less 7.89 22.39 -0.76 6.62 -8.78
FCN8-s 9.92 26.73 -1.66 15.74 -8.77
ALE 16.10 36.36 -0.80 80.36 -25.54
CH2 area, GeoPose3K, 791 images
Edge-less 36.28 51.88 0.39 124.48 -120.18
FCNS8-s 25.68 43.62 -1.80 107.84 -122.17
ALE 11.76 32.04 -0.79 29.23 -9.08
GP1 area, GeoPose3K, 1151 images
Edge-less 14.76 34.89 -0.18 105.22 -7.35
FCNB8-s 13.00 33.97 -1.24 106.21 -7.53
ALE 18.26 36.10 -0.61 98.61 -20.38
Average
Edge-less 19.64 36.39 -0.18 78.77 -45.44
FCNS8-s 16.20 34.77 -1.57 76.60 -46.16
ALE 15.37 34.83 -0.73 69.40 -18.33

Table 1: Statistics of the camera orientation error in de-
grees for a localization experiment on GeoPose3K data
using three automatic segmentation techniques. Symbol
q = 0.95 denotes quantile at 0.95.
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Figure 9: Normalized histograms of camera orientation er-
ror (in degrees) for localization experiment on CHI area
and GeoPose3K dataset using three automatic segmen-
tation techniques — ALE (green), FCN (blue), Edge-Less
(red).

also conducted the largest horizon-based localization per-
formance experiment ever, with the use of the GeoPose3K
dataset and a GP1 area of 86 000km?. We identified a
large performance gap between automatically estimated
horizon lines and manually corrected ones provided with
the CH1 dataset. Usually, the method was able to localize
around 15% of top-1 candiates with a localization error
below 1km using our dataset. The performance was two
times better with the original CH1 dataset: the method lo-
calized around 30% of top-1 candidates with a localization
error below 1km. The best method for automatic hori-
zon line extraction is, according to our experiments, Au-
tomatic Labeling Environment (ALE) [47] (which scored
best in 3 out of 4 experiments), and the second best is
the Fully Connected Networks (FCN-8s) approach (which
scored best in 1 out of 4 experiments).

For the first time, we also evaluated heading estima-
tion performance of the horizon-based localization method
by Saurer et al. [I7]. Through our experiment we illus-
trated that candidates located up to a distance of 1km
from the ground truth showed a heading error of around
a few degrees, and larger discrepancies from the ground
truth heading are rare. In other words, a correctly lo-
calized image also implies a correctly estimated heading.
However, such an estimated heading is only an approxi-

mate estimation, since the usual mean error varies between
0.12° and 11.88° across various scenarios.

5. Future Applications

GeoPose3K dataset is a rich source of information for
solving geo-localization, camera orientation and additional
computer vision and image processing problems. Besides
geographic location and orientation of the camera, it con-
tains additional synthetic data which can serve to train,
evaluate and compare existing and future algorithms. We
propose future research that can be built using this dataset.

Depth Estimation from Single Image. Depth estimated from
a single image is an important cue for image processing al-
gorithms, like single image haze removal [50, BI]. It is an
ill-posed problem, since there is no unique mapping from
a single RGB image to RGB-D. Prior and contextual in-
formation must be taken into account in order to obtain
feasible estimates. The prior is usually chosen arbitrarily,
such as a dark channel [50]. However, the prior, or the
whole end-to-end estimation process can be trained given
our synthetic depth and normal data.

Sun Position from Illumination. Sun position is a viable
feature for location recognition [52]. Previous work esti-
mates the sun’s position given a set of temporal images.
Using our synthetic illumination data, single image estima-
tion of the sun’s position might be trained in an end-to-end
manner.

Semantic Segmentation. Semantic segments proved to be
usable for camera orientation assessment [44]. Using se-
mantic labels from GeoPose3K makes it possible, not only
to quantitatively evaluate existing methods, but also to
train semantic segmentation algorithms for outdoor im-
ages.

6. Conclusion

We have presented here the GeoPose3K dataset for
camera pose estimation. We showed, that the dataset
is unique and valuable for the training and evaluation
of methods in the context of visual geo-localization and
camera pose estimation. We demonstrated an approach
to semi-automatic dataset acquisition using an improved
camera orientation estimation algorithm. We performed
an in-depth analysis of dataset properties and provided
the largest baseline evaluation on a geo-localization task
using a state-of-the-art visual geo-localization algorithm.
Our experiments demonstrated that the GeoPose3K is us-
able for camera orientation and geo-localization evaluation
and the difficulty is on par with original CHI [I3] and
CH?2 [17] datasets. In addition, we proposed several un-
conventional future applications which the dataset enables
us to develop.
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Appendix A. Camera Orientation Assessment

Original Alignment Metric. We reformulate the problem
of matching as introduced by Baboud et al.  [19] who
proposed a matching score per edge es (A.1)):

es(e, D) = )L, le(e;, D) (HPd(eyp + =4gePhm) (A1)

and the final matching score s(Q,D) = > o es(e, D),
where @ denotes the set of edges extracted from a query
image, and D denotes the set of synthetic silhouettes in
which the query image is matched. The term d(e;) mea-
sures the length of the edge segment e;, p and m are
constant parameters. The parameter p defines nonlinear
weighting of edges based on their length, and the negative
parameter m defines the cost of edge crossings.

The term c(e;, D) measures the spatial configuration of
a query edge segment e; with respect to a synthetic silhou-
ette segment e;. In case edge segment e; is parallel with sil-
houette segment e;, the term is equal to 1, and in case the
edge segments are crossing each other, the term c(e;, D) is
equal to -1, and to 0 in other cases. Two edge segments are
parallel, so that all points of the query edge segment e; are
in the £ neighborhood of the synthetic silhouette segment
e;. In summary, the score s(@,D) sums up the lengths
of edges that are parallel with some synthetic silhouettes,
and penalizes edges crossing the synthetic silhouettes.

Weighted Alignment Metric. In the original alignment met-
ric , all edges were assigned the same importance
regardless their visual appearance, even though their ap-
pearance can correlate with their importance for matching.
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Scenario | Thresholded | Weighted
Compass 2.75% 2.75%
CannyDM 6.20% 0.01%
Silhouette 7.25% 9.75%

Table A.2: Image Registration Experiments: The table
shows a fraction of successfully registered images from 400
randomly selected images from Alps100K [35] test set.

In order to improve the matching performance of the orig-
inal method, we propose to weight image edges based on
their strength. We implemented edge strength as a weight
of the edge segment w(e;) € (0,1). Weight w is simply
multiplied with terms d(e;) and m in respectively,
so we get:

esle, D) = X, leles, D) (G2 w(es)d(es ) + =5 Pu(es)m) . (A.2)

Weighted Edge Detector. In order to detect edges from
query images with meaningful weights, we adopt the edge
detection framework by Dollar and Zitnick [53]. Their ap-
proach predicts a 16 x16 edge map from a larger 32x32 im-
age patch. Individual predictions are averaged to produce
a soft edge map for the whole input image. The learning
problem is solved using structured random forests. In or-
der to use standard node splitting criteria, the structured
space of labels ) is mapped to a discrete set of labels C
by a two-stage mapping via an intermediate space Z at
each node. The authors assume segmentation maps being
available for training. Instead, we use our synthetic depth
maps. So as to be able to use depth maps as labels, we
redefine the intermediate mapping II : J —Z to produce
a vector that encodes depth difference y(j1) — y(j2) for
every unique pair of indices j; # jo within a label patch
y € Y. In practice, we sample m = 256 dimensions of Z,
resulting in a node-specific reduced mapping Ilg, which is
then further discretized as in the original paper.

Appendiz A.1. Performance of Alignment Metric

Both the original and the new Weighted Alignment
Metric (Sec. [Appendix Al) assume edge maps on their in-
put. We have experimented with several edge map acqui-
sition methods, including novel depth-based approaches
(described below) to find the best possible settings. The
performance was evaluated by manually counting correctly
registered results. As a test set, we randomly selected 400
images from the Alps100K test set [35]. The number of
selected images is based on the fact that the alignment
metric is demanding on computational time and validation
demands a lot of manpower; and testing several variants
of edge maps would be too expensive with a bigger test
set. The results are summarized in Table [A:2] and show
that the weighted variant of the silhouette detector is by
far the best.

Thresholded edge maps Compass edge detector [54]
has been used in the baseline metric [19]. Similarly to the
authors, we thresholded the edge map (7 = 0.7) to keep



only significant edges. Canny detector applied on the depth
map estimate is an alternative approach based on the es-
timated image depth map. The depth map is constructed
using a dark channel prior technique directly from an input
image [50]. The edges are then obtained from this depth
map using a thresholded Canny edge detector, represent-
ing depth discontinuities. The resulting edge map often
exhibits more distinctive edges further from the camera,
as compared to the edges detected directly from the origi-
nal query image. Thresholded silhouette detector is a ver-
sion of our novel data-driven edge detection method (see
below), with a low threshold 7 = 0.1.

Weighted edge maps Besides standard thresholded
versions, Weighted Alignment Metric enables us to incor-
porate weighted edge maps. We have involved weighted
versions of both methods described above, where the raw
edge strength was linearly rescaled into edge weights w €
(0,1). Additionally, we propose a novel data-driven method
for detection of weighted silhouettes from depth maps ( Wei-
ghted edge detector). Our measurements show that the
weighted variant of our matching metric produces signif-
icantly better results, and the new silhouette detector is
the preferred edge map construction method.
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Appendix B. GeoPose3K Properties

The following figures were taken from the main text
for better clarity in the paper. Fig. [B:10] was referenced
from Sec. [3:32] Edge accumulation, and Tab. B3] was
referenced from Sec. Cameras.

Appendiz B.1. Edge accumulation

Figure B.10: Accumulation of matched edges for a single
query image. We split the area around the GPS location of
the query image uniformly into a grid of 9x9 cells (resolu-
tion of 0.001° in both N-S and W-E directions). From each
cell we render synthetic silhouettes (left) and match them
to edges in the query image. In the accumulated image,
we increase the value of all pixels containing a synthetic
silhouette, which contributed positively to the matching
score. We run such an evaluation for every cell in the grid
and sum up the accumulators to obtain one accumulated
image for a query (right).



Camera model # Camera model #
Canon DIGITAL IXUS 860 IS 253 Canon EOS 650D 2
Canon EOS 6D 112 Canon EOS DIGITAL REBEL XTi 2
COOLPIX L5 109 Canon EOS-1D Mark IT N 2
Canon PowerShot G9 90 Canon EOS-1D Mark III 2
iPhone 5 89 Canon PowerShot A530 2
NIKON D300 76 Canon PowerShot S3 IS 2
iPhone 4 72 Canon PowerShot S60 2
NIKON D80 63 Canon PowerShot SX120 IS 2
NIKON D7000 60 Canon PowerShot SX200 IS 2
DMC-TZ5 59 Canon PowerShot SX260 HS 2
NIKON D90 59 DMC-FS10 2
Canon EOS 400D DIGITAL 54 DMC-FT1 2
Canon PowerShot D10 52 DMC-FZ28 2
EX-S600 46 DMC-FZ62 2
Canon DIGITAL IXUS 870 IS 45 DMC-GF1 2
NIKON D700 45 DMC-GF2 2
Canon EOS 450D 42 DMC-TS2 2
Canon EOS 7D 39 DMC-TZ4 2
SLT-A55V 37 DMC-TZ41 2
Canon DIGITAL IXUS 970 IS 36 DSLR-A700 2
SLT-A77V 34 DiMAGE Al 2
Canon EOS 60D 30 DiMAGE A2 2
Canon PowerShot G11 30 DiMAGE Z1 2
NIKON D800 30 Digimax V5 / Kenox V5 2
NIKON D3X 29 E5900 2
Canon EOS 350D DIGITAL 28 E7900 2
Canon PowerShot S95 27 EX-Z120 2
Canon EOS 5D Mark II 26 EX-Z5 2
DMC-TZ10 26 EX-Z700 2
NIKON D40 26 FinePix S2000HD 2
Canon EOS 40D 25 KODAK DX4530 ZOOM DIGITAL CAMERA 2
KODAK EASYSHARE V1273 DIGITAL
NIKON D5000 25 CAMERA 2
NIKON D60 25 KODAK Z612 ZOOM DIGITAL CAMERA 2
DSC-RX100 23 NEX-5 2
Canon EOS 500D 22 NIKON D3200 2
DSLR-A290 22 NIKON D3S 2
Canon DIGITAL IXUS 40 21 PENTAX DL 2
Canon EOS 5D Mark III 21 PENTAX K-7 2
Canon PowerShot S100 20 PENTAX Optio VS20 2
iPhone 4S 20 TG-1 2
Canon PowerShot A710 IS 19 iPad 2
E-P3 18 iPhone 2
M9 Digital Camera 18 iPhone 3GS 2
Digimax U-CA 5, Kenox U-CA 5 / Kenox

NEX-7 18 U-CA 50 / 1
Canon EOS 50D 17 KENOX S860 / Samsung S860 1
Canon EOS REBEL T3 17 C-5000Z 1
Canon PowerShot G10 17 C40%Z,D407Z 1
PENTAX K100D 17 C720UZ 1
Canon DIGITAL IXUS 800 IS 15 COOLPIX AW110 1
Canon EOS 1000D 15 COOLPIX L1 1
Canon EOS 550D 15 COOLPIX L27 1
Canon PowerShot A640 15 COOLPIX P1 1
COOLPIX AW100 14 COOLPIX P300 1
KODAK EASYSHARE Z950 DIGITAL

CAMERA 13 COOLPIX P510 1
NIKON D200 13 COOLPIX P7000 1
NIKON D8S800OE 13 COOLPIX P7700 1
DMC-FZ38 12 COOLPIX P80 1
DiMAGE 7i 12 COOLPIX S10 1
SLT-A65V 12 COOLPIX S230 1
Canon EOS 20D 11 COOLPIX S500 1
DiMAGE A200 11 COOLPIX S610 1
DiMAGE Z5 11 Canon DIGITAL IXUS 330 1
DMC-LX3 10 Canon DIGITAL IXUS 500 1
DSLR-A550 10 Canon DIGITAL IXUS 700 1
E4500 10 Canon DIGITAL IXUS 750 1
NEX-3 10 Canon DIGITAL IXUS 90 IS 1
NIKON D3100 10 Canon EOS REBEL T2i 1
Canon EOS 30D 9 Canon EOS-1Ds Mark II 1
DMC-TZ35 9 Canon IXY DIGITAL 25 IS 1
DSLR-A350 9 Canon PowerShot A3200 IS 1
NIKON D5100 9 Canon PowerShot A4000 IS 1
NIKON D70 9 Canon PowerShot A470 1
PENTAX K200D 9 Canon PowerShot A590 IS 1
COOLPIX P520 8 Canon PowerShot A610 1
DSLR-A900 8 Canon PowerShot A700 1
PENTAX K-3 8 Canon PowerShot A80 1
PENTAX K10D 8 Canon PowerShot A95 1
PENTAX Optio 33L 8 Canon PowerShot G1 X 1
S1 8 Canon PowerShot G5 1
Canon EOS 300D DIGITAL 7 Canon PowerShot G7 1
Canon PowerShot G12 7 Canon PowerShot Prol 1
DMC-FZ18 7 Canon PowerShot S30 1
DMC-TZ20 7 Canon PowerShot S50 1
DYNAX 7D 7 Canon PowerShot S80 1
NEX-6 7 Canon PowerShot SD1000 1
X-E1 7 Canon PowerShot SD700 IS 1
COOLPIX S9100 6 Canon PowerShot SX100 IS 1
Canon DIGITAL IXUS 55 6 Canon PowerShot SX220 HS 1
Canon EOS 600D 6 D40 1
Canon PowerShot A650 IS 6 D700 1
FinePix S5600 6 DMC-FX37 1
NIKON D4 6 DMC-FX40 1
NIKON D7100 6 DMC-FX8 1
Digimax S1000 / Kenox S1000 5 DMC-FZ30 1
COOLPIX L22 5 DMC-FZ5 1
COOLPIX P5000 5 DMC-FZ50 1
COOLPIX P6000 5 DMC-FZ7 1
COOLPIX S620 5 DMC-G2 1
Canon EOS 5D 5 DMC-LS75 1
Canon EOS DIGITAL REBEL XSi 5 DMC-LX5 1
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Canon PowerShot A720 IS DMC-TZ15 1
DMC-GH2 DMC-TZ3 1
DMC-TZ18 DMC-TZ7 1
DSLR-A500 DSC-W120 1
E-M5 DSLR-A230 1
PENTAX K-5 DSLR-A580 1
PENTAX Optio W20 DiMAGE G500 1
VSCOcam DIiMAGE X1 1
iPhone 5s E-510 1
Canon DIGITAL IXUS 850 IS E3100 1
Canon EOS REBEL T1i E3500 1
Canon PowerShot S2 IS E4600 1
DMC-FT3 E5200 1
DMC-FXO01 EOS 40D 1
DSLR-A200 EX-FH20 1
FinePix F31fd EX-H20G 1
FinePix2800ZOOM EX-Z110 1
KODAK EASYSHARE C613 ZOOM DIGITAL EX-7Z4 1
CAMERA
N97 EX-Z40 1
NIKON D300S EX-Z55 1
NIKON D50 EX-Z60 1
NIKON D70s EX-Z750 1
1

PENTAX DS

FinePix A800

SAMSUNG WB550, WB560 / VLUU WB550 /

w [0 w|wofw|eofw|wofw|wofw|eol w [i|alwlafn] w |efe]els]es] el ol o] alo)aloafoalalox

SAMSUNG HZ15W FinePix F30 !
Digimax S830 / Kenox 5830 FinePix F450 1
COOLPIX P5100 FinePix J150W 1
COOLPIX S4 FinePix S200EXR 1
Canon DIGITAL IXUS 65 FinePix S5000 1
Canon DIGITAL IXUS 950 IS FinePix S6500fd 1
Canon EOS 1100D FinePix S7000 1
Canon PowerShot A620 HP PhotoSmart C945 (V01.46) 1
Canon PowerShot A70 HP PhotoSmart R707 (V01.00) 1
Canon PowerShot S5 IS KODAK CX7530 ZOOM DIGITAL CAMERA 1
Canon PowerShot SX230 HS KODAK DX7440 ZOOM DIGITAL CAMERA 1
DC P500 KODAK EASYSHARE C195 Digital Camera 1
KODAK EASYSHARE ZD710 ZOOM
DMC-FX35 DIGITAL CAMERA !
KODAK V610 DUAL LENS DIGITAL
DMC-FZ200 3 CAMERA 1
DMC-G3 3 Konica Digital Camera KD-400Z 1
DMC-TZ30 3 LEICA X1 1
DMC-TZ31 3 NEX-3N 1
DMC-TZ6 3 NIKON D100 1
DSLR-A100 3 NIKON D1X 1
DSLR-A300 3 NIKON D2Xs 1
E-PL3 3 NIKON D3000 1
EX-Z75 3 NV20, VLUU NV20 1
FinePix JZ500 3 PENTAX DL2 1
Hasselblad H3D 3 PENTAX K-r 1
KODAK 7740 ZOOM DIGITAL CAMERA 3 PENTAX K100D Super 1
NIKON D3 3 PENTAX Optio S4 1
NIKON D40X 3 PENTAX Optio S7 1
NIKON D600 3 PENTAX Optio WPi 1
PENTAX K-x 3 QV-R52 1
VR330,D730 3 gfé\:{)SUNG ES15 / VLUU ES15 / SAMSUNG 1
SAMSUNG ES55,ES57 / VLUU ES55
WB2000 3 SAMSUNG SL102 / / !
SAMSUNG EST74,ES75,ES78 / VLUU
C750UZ 2 ES75,ES78 / 1
COOLPIX S9500 2 SAMSUNG WB850F/WBS855F 1
Canon DIGITAL IXUS 50 2 SLT-A35 1
Canon DIGITAL IXUS 70 2 SLT-A57 1
Canon DIGITAL IXUS 80 IS 2 SLT-A99V 1
Canon DIGITAL IXUS 85 IS 2 SP560UZ 1
Canon EOS 100D 2 X-Prol 1

Table B.3: Number of images per camera model in the GeoPose3K dataset.
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