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ARTICLE INFO ABSTRACT
Article history. Image enhancement tasks can highly bene t from depth information, but the direct
Received May 4, 2018 estimation of outdoor depth maps is diult due to vast object distances. This paper

presents a fully automatic framework for model-based generation of outdoor depth
maps and its applications to image enhancements. We leverage 3D terrain models and
camera pose estimation techniques to render approximate depth maps without resorting

Keywordsimage enhancement, synthetic to manual alignment. Potential local misalignments, resulting from icgent model
depth, 3D terrain, free-form warping, im- details and rough registrations, are eliminated with our novel free-form warping. We
age registration, synthetic camera rst align synthetic depth edges with photo edges using the as-rigid-as-possible image

registration and further re ne the shape of the edges using the tight trimap-based alpha
matting. The resulting synthetic depth maps are accurate, calibrated in the absolute
distance. We demonstrate their bene t in image enhancement techniques including
reblurring, depth-of- eld simulation, haze removal, and guided texture synthesis.

€ 2018 Elsevier B.V. All rights reserved.

1. Introduction 10], help, but are not always available. Range sensidijsgre s
applicable only to limited distance ranges (only up to tens af

A limited con guration in taking photographs does not always meters). =
lead to the highest quality, and often motivates enhancement of ¢ petter alternative can be an indirect estimation from a 3B

photographs. Computational photography has addressed SUgl4in model, which renders the reference depth map as previ-
limitations, which introduces additional exibility on focus, ex- ously suggested by Kopt al. [12]. The terrain model is already
posure, and deptti{2, 3]. Among them, depth information, ,4ijable for the whole planet and recent photographs are usually
on WhICh we focus here, can greatly faC|_I|tate diverse IMageye.-tagged (e.g., the global positioning system; GPS), which
manipulations, such as refocusing, dehazing, texture synthesiS, serve as a strong external cue. Further, this approach cansbe

and image editing [4, 5, 6, 7]. distinguished for its higher resolution and accuracy; the direet
Outdqor photographée.g., natur'al |anqscapes) represent bYestimation may yield a coarser resolution or wrong outcomes:s
far the biggest group in many media servicgf but their direct

d 2 However, the 3D terrain model may be instient in its 2z
epth estimation poses a challenge. They are usually monocular,

which has a low chance to work with typical structure—from—:zsioslgrgzgﬁggtsvegzgsrézlgé#;ﬁaf; 3?&\/2??&2"@!3% a Svrﬁgze
motion. Within-image features, such as airlights or textuges [ gIstr Co . : '9ing,
the alignment errors result in visible artifacts in edited images.

Manual registration starting at a rough initial guess can HEBfy [ =0
_ but is laborious and inappropriate for massive batch processiag.
Corresponding authors:

e-mail: cadik@fit.vutbr.cz  (Martin Cadk), sungkil@skku.edu In this work, we present &lly automaticframework for =
(Sungkil Lee) depth-map generation and alignment for an outdoor photograph.
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Fig. 1. Transforming an outdoor photograph into a model-like look. An automatically generated synthetic depth map is used to calculate plausible blur
kernel size map (middle) to simulate shallow depth-of- eld (right) in landscape images (left), where such an ect cannot be achieved using standard optics
for physical reasons. Virtual camera: full-frame, f-number=1.0, focal length-1200mm, focus distance5km.

)

EXIF (GPS, field of view)

R

Automatic free-form
depth-map warping

Non-linear edge matching Estimated camera pose Depth map rendering

(for candidate camera orientations) (with the best-match score)
Outdoor photograph Photo edges —

Fig. 2. Overview of our fully automatic depth-map generation framework from a single landscape photograph. Based on the EXIF information of the
photograph, the camera pose to render the 3D terrain model is automatically aligned with the image. Then, the initial coarse depth map is rendered from
the model using the estimated camera pose; some inaccuracies may show up due to insient precision of the model or due to camera alignment errors.
The nal depth map is re ned using the free-form warping to match the local features of the input photograph.

A virtual camera is rst localized with the geo-tagging informa- modi cation to hardware or light patterns proved its utility, suchss
tion of a photo and recent camera pose estimation techniques light elds [27, 28, 29, 30, 31], coded aperture3] or struc- 2
Then, the 3D terrain model is rendered at the virtual camera ttured light method [33]. %
produce an initial approximate depth map. Local inaccuracies, Depth maps can further be generated semi-automatically using
resulting from the rough registration and instient details of  sparse samples (seeds) provided by the &35, 36, 37]. In =
the model, are subsequently reduced using our rvelmatic  these approaches, anisotropic asion is used to propagate s
free-form warping. We rst align discontinuities in the synthetic depth information from seeds to the rest of the image. The key
depths with photo edges using the as-rigid-as-possible imagessumption here is that the gradient of the resulting depth map
registration. The shape of the edges is further re ned usinghould roughly correspond to the color gradient. 3
the tight trimap-based alpha matting. The resulting depth map, The previous methods are not applicable to ours which is
synthesized from the geo-referenced terrain modabsolute  targeting onsingle outdoorphotographs. The stereo visionss
(calibrated in meters). We show its bene tin image enhancemendechniques require multiple images, while the range sensors wask
tasks, including refocusing, defocus manipulation (see Fig. 1pnly for a small range of distances. Computational photography
dehazing, and texture synthesis. requires special hardware or modi cation to the aperture. For
the di usion-based techniques, real photos often violate their
main assumption about compatible depth and color gradienis,
and also, the positions of depth seeds require to be accurate.
Otherwise, the diusion will propagate small misalignments to.s
& notably larger area and lead to notable artifacts. s
Kopf et al. showed the combination of geo-tagging and 3D
models can be used for fairly accurate geo-registration and many
applications including dehazing and relightiriki?]. The geo- 4
tagging already allows us to select areetive subset for struc- s
Robust depth map reconstruction is an ongoing subject of inure from motion B8], but when combining with the available 3D =
terest. A typical approach is to rely on stereo image pass19| models, we can directly render a depth map. The combinatien
or multiplemultiview images 20, 21, 22]. More recently, short- even enables to assign geo-locations and labels onto pB@|s [ s
distance range-sensing devices, such as Kirddgtimproved  point clouds 88, 40|, or annotate photo#fl]. Nevertheless, the =
the availability of depth maps in indoor environments [23]. depth map is not pixel-perfect and requires ne alignment; we
Multiple images are not easily available in practice, andaddress this issue in the present work. 56
single-image processing has also been intensively studied. Semi-While the majority of previous approaches estinralative s
automatic user interaction often hel@el[ 25, 26], and further  depth maps, our solution can generalsolutedepth map from s

2. Related Work
We brie y review previous work on depth map reconstruction

and its major applications including defocus manipulation an
dehazing.

2.1. Depth Map Reconstruction
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Fig. 3. Aligning model depth map with the input photograph—the 3D model (a) is roughly aligned with an input photo (b), the depth map (c) is extracted
using the estimated camera location and an intrinsic image [14] of the input photo (d) is computed. Depth discontinuities are extracted in the depth map (e)
and edges are detected in the intrinsic image (f). Initially, model edges are misaligned with respect to photo edges (g), to reduce this misalignment as-rigid-
as-possible image registration [15] is used (h), then edges are subdivided into individual segments (i) and tight trimap is constructed for each segment (j),
alpha matte [16] is computed (k) and thresholded (1) to get the nal re ned shape of the photo edge (m). Given the initial model edge (n) and the re ned
photo edge (0), deformable image registration [17] is used (p) to obtain the nal sub-pixel accurate alignment (q).

the geo-referenced digital terrain model. This is highly bene cial3. Automatic Depth-Map Generation and Alignment a0
in many image enhancement applications; for instance, there _ _ _ _
are more chances in estimating kernels for defocus blur or other In this section, we describe our fully-automatic approach te

e ects. depth-map generation from a single color image as well as a teeh-
Similarly to our goals, the method proposed by Kepfal.  nique used for the nal depth map re nement (see Figs. 2 and 3
[12] allows to synthesize absolute depth maps. However, ifor summary). “

requires auser-assistethteraction for registration, which moti-

vates for our novel depth free-form warping step (Section 3). Retrieval of 3D Terrain Model A Google-Earth-like digital
terrain models are currently available for the whole planet. They

2.2. Defocus Manipulation are acquired from satellites afod planes and published in form «

The defocus blur, caused by shallow depth of eld (DOF),Of geo-_referre(_j digital elevation maps (DEMSs) even for less
is pronounced in indoor photos or Ims, but hardly exhibited 2cC€SSIPI€ regions. Such models are sient for our purposes «
in outdoor photography (even with large lenses). Its capturd-€- outdoor photographshowever in general case, a 3D modeks
is inherently restricted to a particular con guration (e.g., focus™ight not be available (e.g., for indoor environments). We
and f-number). Thus, its post-reproduction for novel con g- experimented with the following publicly available DEM terrains.

urations (with computational photography) drew attention fordatasets: the Alps (24 meter spaced samplespXptional s
refocusing [32, 33] or defocus magni cation [42]. Elevation Dataset (8fpx, USGS), and Eastern Europe models s

3 )
Another mainstream is the postprocessing of a usual singl6l0MPX° and 5nfpx’). In case of an areal overlap of the terrainss
view image, which comprises deblur and refocusing. Typicallyf“Odels’ we used the one with the h|ghest. available resplunom
In case of an outdoor scene, the DEM is generallycent s

the deblur involves blind deconvolution using known priors to e - _ X
for cameralocalizationand pose estimationand a synthetic s

estimate kernel24, 43]. However, a precise solution requires . S
to consider geometric visibilities similarly to the distributed ray 9€Pth map may then bgeneratedeasily. However, existing
elevation models still do not capture trees, small buildings, cas,

tracing [4]. Our solution and its absolute depth information - A ) ]
and other man-made features in a sient detail. For this «

can facilitate the estimation of per-pixel local blur kernels to
some extents, enabling non-blind deconvolution. Refocusinge@son. we propose to nalle ne the generatedepth map

can also bene t from ours, which can use a precise renderinS'"9 the free-form registration with the input photograph. e

technique [45].
que [45] Localization of Virtual Camera.To render the initial depth map, e

2.3. Dehazing the location of a real camera (used to capture the outdoor pho-
: tograph) requires to be known in advance. By default, we can
Qutdoor photographs are often haze_d by at_mqspherlc SC%’cate the position of unknown camera using the structural fea-
tering that can b_e characterized by medrl_namsmlssmn mMaps  tires of an input photo. Speci cally, we use skylioentours and s
depending h(_aavn_y on depths.. Most previous _vvork has focusefﬂrther geometric constraints as proposed by Battd. [56], <
on depth estimation an(_j radiance recovery, including Marko\ll\/hen the image lacks information about camera location. Other
random elds (MRF) 16}, independent component analysiS] possibilities include cross-view image geolocalizatibd|[di- =«

dark channel prior48], factorial MRF J49, 50, 51, 52], and e : L
machine-learning approaches using random foré&ss], and rect data-driven regressioBd] or classi cation B9 of the =

convolutional neural network®§]. In our case, geo-referenced

absolute depth maps are used for dehazing, which can be mcrelhtt T ———
precise than the previous ones. We obtain such maps aUIO'thth//ned.qsgs.gov pa s-019
matically without the previous manual image-to-model registra-  3nitp./mww.geoportal.sk

tion [12]. “http://geoportal.cuzk.cz
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camera location, image registration into the 3D structure a@n image le of high-dynamic-range format (to facilitate thess
quired by structure from motior{)], image retrieval from a absolute distance estimation). 54
geo-referenced image databa&@[and others§1]. However, However, the synthesized depths may exhibit local misaliga-
they are exhaustive and inaccurate in some cases. Fortunatehgnt between the depth map and the photo, resulting from the
approximate locations can be easily found from the picture itsel€oarse resolution of the 3D model, unknown non-rigid projectios
in many cases; GPS is integrated with many recent cameramrameters of the photos, or other inaccuracies in the alignment
and smartphones and its information is recorded in EXIF taggrocess (e.g., occlusion of silhouette edges). This problem may
Hence, we assume the approximate location of the camera kg alleviated by blurring the depth map (Fig. 4), but for bettes
already known and in the following steps we sample only nearegistration, we propodeee-form depth map warping what e
proximity of the known location follows. 62

Camera Pose EstimationGiven the camera location, we auto-
matically estimate itpose i.e. all the unknown camera orien-
taion angles (yaw, pitch, and roll). We implemented a visual
camera orientation estimation in a way similar to that of Baboud
etal [41]. The method is based on matching the edges detected
in the photograph with the synthetic silhouettes rendered from
the terrain model.

More speci cally, we rst exploit the image EXIF data (as- e
sisted by a camera database) to perform rectilinear projection
with the known eld-of-view. We then render model silhouettes
as depth discontinuities into a 2D cylindrical image, which is
vectorized into a silhouette edge map. This map is then aligned
with the image edges by means of vector cross-correlation fol- Okm
lowed by a non-linear matching metric [41] (see Fig. 2).

For the image edge detection, we developed a novel Weightgdg. 4. Dehazing artifacts due to coarse synthetic depth map (left) can be
edge estimator using the learning-based framew@2k During  partially mitigated by blurring the depth map (middle), and fully removed
matching process decrcibed above, the edges are thus assigmeifld the proposed free-form depth warping (right).
relative importance according their visual appearance. For nd-
ing salient silhouette edges, we predict a 16px edge map
from a larger 32 32px image patch. Individual predictions are Automatic Free-Form Warping of Depth Mago register the e
averaged to produce a soft edge map for the whole input imag&odel's depth map with the input photo (Fig. 2), we propose a
The learning problem is solved using structured random forest§ovel automatic free-form warping solution that resolves twe
In order to use standard node splitting criteria, the structureey challenges: (1) cross-domain registration between the coler
space of labely is mapped to a discrete set of lab€ldy a  image and the depth map and (2) potentially large misalign-
two-stage mapping via an intermediate spAcat each node. ments. 68
The learning-based framewor&g] assumes segmentation maps For the rst challenge, we unify the registration domains bys
being available for training. Instead, we use pre-rendered depxtracting dominant discontinuities in the depth image (Fig. 3e)
maps. To be able to use depth maps as labels, we rede ne the ias Well as the photo (Fig. 3b). The model's depth map expresses
termediate mapping : Y !1Z  to produce a vector that encodes the discontinuities wittmodel edgeéFig. 3e), which is extracted -
depth di erencey(j1) Y(j.) for every unique pair of indices by hard-thresholding the magnitude of a gradient eld of thes
j1, j» within a label patchy 2 Y. In practice, we sample depth map. Correspondimgoto edgesare computed from the 7
m= 256 dimensions af , resulting in a node-speci ¢ reduced intrinsic image 4] (Fig. 3d), which removes spurious edges:s
mapping , which is then further discretized as in the original caused by shading. Then, we again extract the gradient magai-
paper. tude in the color domain with thresholding (Fig. 3f). 7

The camera pose estimation procedure is repeated for eachTo cope with the second challenge (the large mismatches
candidate in the proximity of the approximate camera locatiorPetween model and photo edges), we use a previous iterative

and the result with the highest matching score is selected fas-rigid-as-possible deformation methdd][(Fig. 3h). Its key
further processing. advantage here is its block matching that allows us to nd a

globally optimal registration on a small neighborhood, while-
Depth Map RenderingGiven the camera parameters estimatedas-rigid-as-possible regularization suppresses the excessivesde-
in the steps described above, we can easily render the depiérmation of edges. o
map from the terrain model (in our case, using ray casting). Once the model edges (Fig. 3j) are roughly aligned aroung
The obtained depths calibrated in meters are nally stored ithe photo edges, we further re ne the shape of the photo edges
using a trimap-based matting. To do so, we detect junctions
and end points on the model's edge map and subdivide edges
5The area is sampled uniformly as a grid of®samples with 0.00lresolu-  INtO individual segments. Edges of each segment are eroded
tion in both N-S and W-E directions. to build the trimap by setting three distinct regions: apparent
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100km
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Fig. 5. Given a single color input image, our system creates more plausible absolute depth maps (right) unlike previous depth map estimations (e.g., dark
channel prior [48], or deep learning based method [63]; middle).

background (black), apparent foreground (white), and unknownsgience, the farther the area to the camera, the higher quality
Then, we compute an alpha matte (Fig. 3k) using a closed-forrachieved. Fig. 6 shows depth map edges overlaid on the pheto
approach16]. The matte is thresholded arountb@Fig. 3) to  with di erent resolutions of the DEMs. Our experiences show
re ne the shape of the photo edges (Fig. 3m). that currently available DEMs<(8m spaced samples) constitute.r
Finally, we warp the depth map by aligning the roughly su cient resolutions for objects farther than 500 meters from
aligned model edges to the re ned photo edges. We perform ththe camera. This issue can be partially mitigated by blurring the
sub-pixel accurate deformable registratid][with the input  depth map, however this, in general, motivates for our free-form
photo (Fig. 3q). Then, the resulting deformation eld is used towarping; see Fig. 4. a1
warp the initial depth map to the nal depth map (Fig. 2). Finally, we compared our free-form depth warping with Deep=
Matching p4], a recent correspondence matching method (te
facilitate further warping); see Fig. 7. DeepMatching uses multi=
level correlation architecture to handle non-rigid deformations
Qualitative evaluation.Our system producesbsolutedepth ~ and to determine dense correspondences. Our warping well
maps in high quality; see Fig. 5 (right). Unlike ours, the previousaligns synthetic depth edges with the details captured in the
methods operating directly on image pixed8[63] may result ~ photo resulting in correct depth map (Fig. 7, right column). Irs
in relativeandnoisydistances; Fig. 5 (middle). The depth map contrast, DeepMatching (Fig. 7, middle column) fails to estala-
quality comparable to our rigid alignment can be achieved witHish relevant correspondences between the depth map and pheto
the manual model-to-photo alignmend®], but our results can  due to their di erent modalities. a
be produced automatically and in a shorter time, as discussed
below. Moreover, the manual alignment may also bene t from
our free-form warping, because the input terrain model is hardly
perfect in terms of object details.

4. Experimental Results

Fig. 7. Comparison of DeepMatching algorithm [64] (middle column) with
our free-form warping (right column). Left column: input photograph

and original misaligned depth map. While ours well aligns edges which
results in a correctly warped depth map, DeepMatching fails to establish
dense correspondences making warping impossible (colored crosses denote
corresopondences).

Fig. 6. The e ect of DEM resolution on the spatial quality of the depth map. o . o .
DEM resolutions of 480m, 48m, and 24m (left to right). Quantitative evaluation.Quantitative evaluation of our free-

form depth map warping is dicult, because there exist no .

The spatial accuracy of the resulting depth maps depends around-truth datasets (i.e., accurate depth maps for real natusal
the resolution of the terrain model and on the distances cafandscape photos). Instead, we usgghually-alignedsynthetic 4
tured in the photo (i.e., the visual angle subtended by a pixelilepth maps aeferencedepth maps for comparison. The depthe
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ter). As shown in the table, the errors of our depth map warping

are order of magnitude better than the other two methods. 2

Moreover, we also quantify the robustness of the proposed

free-form warping to particular errors in camera pose estimatiosa.

Fig. 8. Experimental evaluation set-up. In reading order: test images 1-3 Fig. 9 ShOWS alignment e”ors Wlt.h regard to Cam.e.r"?‘ misalign-

with example distortions in camera yaw ( = +0:05rad), pith ( = +0.05rad, ~ MeNt speci ed by angular distortions. The sensitivity of outs

androll (= +0:05rag. method to errors in yaw, pith, and roll is similar; i.e., all threes

camera rotations act the error to the same degree. To test this

i _ _ statistically, we use 3-way analysis of variance (ANOVAJ]f =

values are assigned by our technique for depth map generatiQpyich, includes factors of yaw, pitch, and roll. The null hypothex

but the depth maps are aligned mantfally sis is “there is no signi cant dierence in warping error between s

The evaluation used three photos and their reference depffymera orientation distortions in yaw, pitch, and roll” The.

maps. For each photg, we then generated ;000 depth MAaRRIOVA results showed that the null hypothesis is not rejected

(inputs to the automatic warping) randomly distorted in YAW(E, 11(1;2999) = 0:88, pyaw = 0:81; Fpiren(1;2999) = 1:22; s

pith, and roll; see Fig. 8. Each rotation angle was altered b¥) ich = 0:18; Fron (1: 2999)= 0:75; proy = 0:86).
an independent random additive cagient drawn from normal ' IO P

distribution (standard deviation=0.01ad). The input depth  performance.Our unoptimized @+ implementation (on Intel s
maps with the original photo were fed into our free-form warping;7 2 4 GHz, 8 GB memory) requires on average 1 and 4 mia.

37

algorithm to produce output depth maps. for image-to-model alignment and free-form warping, respee-

tively; depth map rendering is marginal. The free-form warping

Table 1. Quantitative evaluation of depth map accuracy Eaps). spends most of time on the L1 intrinsic decomposition. Thi_&
Method imagel image2 image3 average C&" be acceleratgd using a better edge detector (e.g., data-drisen

method [62]), which is a good avenue for future work. a

monodepth [63] 2647 0476 2247  1.790 For comparison, we implemented the manual alignment in.a

dark-channel-prior [48] 9.462 0.601 6.932 5.665

our method 0.935 0.026 0.134 0165 Wy simalar to Kopgtal [12]. Our experience is in accord with

previous measurement$d; the interactive session requires
on average 3 min. for a skilled user to align the photo withs
the model. Note that a nal depth re nement (i.e., our frees
form warping) is still required to reduce misalignments from.
insu cient details of the terrain model against the photo. 51

5. Applications of Absolute Depth Maps 52

This section demonstrates several applications that pro t from
our automatic depth map generation. In particular, we present.a
novel image refocusirigefocusing algorithm that bene ts from =
the knownabsolutedistances stored in the depth map. We alse
show further bene ts of our approach in dehazing, and guided

texture synthesis. 5
Fig. 9. Depth map alignment error (Eapsy) for our free-form warping given
distortions in camera yaw, pith, and roll. 5.1. Image Refocusing and Defocusing N
We compared the accuracy of outputs of our depth map Theimage refocusirdgefocusing algorithm we propose works e
warping against the recent single-image depth-map synthi# three steps. First, the unknown focal plane is estimated from
sis techniques, monodeptBd and dark-channel-prior meth- detected focused pixels whose absolute distances are given:in
ods K8]; there exists no competitiveutomatic depth-map warp- our depth map. Then, space-variant blur kernels are calculatedto
ing method. As the other two methods give ord§ative depth  refocus the input photograph using non-blind deconvolution. Fir
values we normalized all the predicted depths (including oursnally, the depth-of- eld e ects are simulated via post-processings
and ground-truths) linearly to the interval of [0,1] for the follow- or image-based ray-tracing. Please note that both the focal plasne
ing evaluation. For each method, dirence with the reference estimation and space-variant deconvolution steps are feasible
depth maps is quanti e% using commonly-usals relative  thanks to the absolute depth estimated in Sec. 3. 68
di erencg66]: Egpsr= J% ieridi  d j=d.; whereT is the res-
olution of input imaged andd are the estimated depth and Estimation of Focal Plane Distancelhe distance to the focal e
reference depth, respectively. Table 1 shows errors (lower is batlane from the camera, usually denotegast of focugPoF) in
photography, is crucial for subsequent refocusing steps. Sinceuit
is di cult to precisely measure the focal plane distance without
6The new dataset is available for download dittp:/cphoto.fit. knowing the accurate capture conditions, we instead estimate
vutbr.cz/depth/ the focal plane distance usingacus measure 74
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Fig. 10. Simulation of shallow depth-of- eld e ects. The input image ( rst) has been arti cially defocused using synthetic depth map, focusing on 6km,
30km, and 70km (in the reading order). The virtual full-frame DSLR camera used f-number1.0, and focal lengtk=1200 mm.

Fig. 11. Image refocusing results (best viewed in electronic version). In the reading order: original image, deblurring using regularized intensity [65],
maximum likelihood blind deconvolution using our largest estimated blur kernel as a prior, and the proposed space-variant deblurring result. Right: an
illustration of the space-variant kernels. The deconvolution technigues, that assume only single kernel, oversharpen the foreground. Our method refocuses
the image adaptively and does not suer from this problem.

The idea of our focus measure is to selentediandepth of  imaging, the PSF can be a simple circular or polygonal shape
focused pixels in the image, which is a reasonable approximatiowith the constariGaussian intensity pro le. This information s
to the true focal distance. We detect (sharply) focused pixelallows us to approximate the spatially-variant PSFs, as illustrated
using Laplacian of Gaussian (LoG), which performs well inin Figs. 1 and 10. For text brevity, the formulae to calculate the
shape-from-focus evaluation8q]. We apply thresholding to the spatially-variant PFSs are given in Appendix A. 3
LoG response of the image, and keep only the sharpest pixels Having the approximate PSFs for the image, we proceed with
(i.e., top 2%). We then query the synthetic depth map for thehe non-blind deconvolution. Importantly, the deblurring algo=
absolute distancesf the detected focused pixels, and use theirithm must accommodate PSFs with discontinuities, because the
median depth as the focal plane distance. depth may vary signi cantly in outdoor images. To this ends

we implemented a space-variant deblurring method based en
Refocusing by Space-Variant Non-Blind Deconvolutitvhile  constrained least square method with total variation regulariza-
outdoor photographs are lessazted by the defocusing, some tion [73]. In contrast to previous approaches which resorted
of them might still exhibit slight defocus blur. In such a caseto estimations of PSFs afut assumed only a uniform PSF,
a refocusinggeblur is required to recover the sharpness of thave directly calculatethe space-variant kernels using absolute;
photographs, resulting in all-focused images suitable for furtheglistances encoded in the depth map. This improves image refo-

processing. cusing results, as shown in Fig. 11. The full refocusing process
In general, the deconvolution kernel (point-spread functionrequires on average 1.5 min. for 1M pixel image (on Intel i7, 2.4,
PSF) is unknown (so, we cdllind deconvolution), and multiple GHz, 8GB memory). 52

kernels or images can produce the same output. Thus, the blind
deconvolution for refocusing, in particular with a single image Defocus Manipulation and Depth-of- eld Simulatioinally, s
is an ill-posed and challenging problem. Previous single imageve can re-blur the refocused sharp image as the user wishes.
based methods simultaneously assessed the spatially-varyiBgsides faithful reproduction of the depth-of- eld (DoF) to realss
blur kernel and the sharp image [69, 70, 71, 72]. cameras, shallower DoFs can be expressed to enhance saliexcy
Depth information available from our absolute depth maps iof objects, which would normally be impossible to capture in
greatly helpful in enhancing the accuracy of deconvolution oreal ones (Figs. 10 and 12). 58
facilitating non-blinddeconvolution. Assuming the image blur  An accurate depth map, which we acquire in Sec. 3, is utilized
comes solely from the defocus (i.e., no motion blur), we caragain for an adaptive kernel. Similarly to the refocusing, the
calculatethe extents of the spatially-varing PSFs, as it variesshape of the PSF is given by the depth map, point of focus, ard
depending on the depth and the focal distance (estimated in tharameters of, this time, tteémulated camerasee Appendix A e
previous step). for details. 63
Unlike general (motion) blur, the defocus blur does not have We rst experimented with a separable ltering with Gaussianes.
much variation in the shape of PSF. The PSF generally resemblégrnel, but such a simple convolution-based blur often fails
the shape of the aperture, and the parameters are often availalleund discontinuous depth boundaries (Fig. 12). The depth
from EXIF information (f-number or aperture stop, focal length,transition can be better handled by incorporating precise geo-
and sensor size). Assuming daction-free and aberration-free metric visibility, which can be derived from the depth informass
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B i =
Fig. 12. Comparison of ray-traced defocus blur (b-d) and Gaussian blur (f-h) generated from the color (a) and depth inputs (e). The black-edged boxes
show blur kernel sizes (in pixels). The ray tracing better handles discrete depth boundaries than Gaussian blur does (see the red insets).

Fig. 13. E ect of the automatically estimated dehazing parameter. In the reading order: = 0;1:5 10 8and3:5 10 ©:

tion. For this purpose, we also implemented the state-of-the-aA is initialized automatically with the average color of the 0.1%s
GPU-based ray trace4}], which can blend multiview images brightest pixels from the dark channdd in the sky area. The
precisely and deliver better quality (Fig. 12). We implementeddehazing results are obtained at interactive speeds and they are
both methods using GPU (on Intel i7 2.4 GHz with NVIDIA shown in Fig. 14. 29
GTX 980 Ti and OpenGL), and they performed in real time (e.g.,

1-2 ms for 1024680 resolution). 5.3. Guided Texture Synthesis Y

) Guided texture synthesis (texture-by-numbers) is a variant af
5.2. Single Image Haze Removal popular image analogies framewoi#d]. It allows us to transfer =
Natural landscape images are often degraded by haze daegexture from a given exemplar to a target image using guid-
to atmospheric absorption and scatteringage dehazingor  ing feature maps. In our scenariange data(depth map) and =
removing such phenomena is generally a challenging problemsynthetic shadingan be used to guide semantically meaningfuls
because the amount of haze depends on the distance from thensfer of texture from the existing photograph to a virtual scene
camera. The main @rt of single image dehazing algorithn#8[  (Fig. 15). Note how the corresponding values in the range map
51] was directed to depth estimation. In our case, however, thand shading image help the algorithm to synthesize proper tex-
absolutedepth is given in an accurate depth map and we cature at particular locations, e.g., snowcapped peaks or shadaws
directly proceed to the recovery of the scene radiance. Havingp lowlands. To implement this, we us&tyLitmethod 5] 4
solved the main dehazing issue implicitly via the estimatedcurrent state-of-the-art in guided texture synthesis). However,
depth map, we proceed similarly to ¢ al. [48 12]. We  we replaced LPE-based guiding channels used in StyLit with owr
recover the scene radiance on per-pixel basis as folldws:  depth map and shading and run the synthesis algorithm, whigh
A+ (Ix  A=Fmaxty; to)), wherely is the recovered radiance in resulted in faithful synthetic images as shown in Fig. 15. The
the pixelx, Ais the global atmospheric light is the observed advantage of StyLit as compared to the original greedy approach
pixel irradiance ty is the medium transmission given by the of Hertzmann et al.q4] is that it performs texture optimization a
depth map, anth = 0:1. More speci cally,t, = e ¢ where which jointly satis es texture coherence as well as matching of
dis the depth of the point, and is the scattering coecient.  guiding channels. In addition to that it also adaptively encous
We set so thatty = 0:75 for the furthest point in the photo, i.e. ages uniform usage of source texture patches which signi cantly
= 0:3=d, which leads to good results (Fig. 13). The cagent  improves the overall quality of the synthesis. 50
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Okm

Fig. 14. Example of the single-image haze removal (right) for the input photo (left) using synthetic depth map (middle). Notice the spiky peak on the
horizon, which has been completely obscured by clouds in the input photo.

(c) source texture further showed the bene t of our synthetic depths in dehazing,
and guided texture synthesis. 12

Limitations and Future WorkThe main limitation of our ap- 1s
proach resides in large foreground objects, which are often cap-
tured in the photograph but not in the model. The free-form
warping step cannot cope with this case and artifacts may shew
up in subsequent image processing (Fig. 16). This could be po-
tentially alleviated by foreground object classi ers, which mays
direct further research. 19
The depth map rendering step assumes a correctly estimated
camera pose, i.e. camera location and orientation. This estima-
tion is rather stable and ecient, when the approximate position 2
of the camera is known (e.g. given the GPS reading stored as
an EXIF tag). However, when camera positions are completely
unknown, the pose estimation is much less reliable due to-a
Fig. 15. Example of guided texture synthesis. From the source texture, its large-scale exhaustive search. In that case, our pipeline resaits

depth map and shading, we automatically synthesize a novel texture (the tO PuUrely visual camera geo-localizatiod6]. This is an ex- =

—
(f) synthesized novel texture

red box) for the target depth and shading. tremely di cult task especially in outdoor environments, and as
_ _ _ such, it is a topic of intensive ongoing computer vision research.
6. Conclusions and Discussions Our as-rigid-as-possible deformation method relies on the

existence of su ciently strong gradients to align mismatches bex

In this paper, we proposed an automatic approach to aCqu";ﬁ\leen the model and photo edges in the input photograph. This

depth maps of natural landscape images. The absolute depthdgsumption may lead to lower accuracy for internal depths that

re.ndered from a d igital elevation model, that is aupomat'ca."ycorrespond to the structures of weak color contrast. To alleviate
aligned with the input photograph. To match the tiny detail his issue, one may consider to replace the computation of -

of the photograph, which are not necessarily captured in th{?insic images 14] with an advanced CNN-based segmentations
model, we proposed a free-form warping step. In this way, quchnique (e.g. [76]) N

obtained accurate depth maps calibrated in absolute dlstancesrn the future, we will exploit our automatic depth map synthes

We showed this was bene cial in image editing and enhanceg;q image quality assessment task, where the depth informa-
ment, in particular for refocusing and defocus manipulation. We; improved the state-of-the-art signi cantlyJ|. We believe  «

that other elds such as image completion, inpainting, restora-
tion, and panorama stitching will bene t from automatically..
generated depth maps as well. a
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Appendix A. Spatially-variant point spread function

[13)
DOF
L
5 c 14
D |S [PV / [25]

Fig. A.17. De nition of variables and illustration of the depth-of- eld for a [16]

symmetrical lens.

To assess the spatially-variant defocus kernellsizee pro- 7]

ceed as follows. The important variables are illustrated in
Fig. A.17. First, thecircle of confusion(c) is calculated us- [18]
ing the “Zeiss formula” (modern standardd: ¢ = ds=150Q (1]

whereds is the sensor diagonal size in millimeters. Then,lihe
perfocal distancé€H) is calculated as followsH = 25N ¢);
wheref is focal length,N denotes the f-number, amds the
circle of confusion limit. The depth-of- eld POF) is then:
DOF = D Dy; whereDg andDy is the near- and the far-limit, [21]
respectively (the nearest and farthest distances in a scene that
appear acceptably sharpinanimade).= H S=H + S); and
D =H SHH S); whereH is hyperfocal distance, arglis
focus distance. Finally, the kernel diametey &t the given point
is calculated as followsh = f—”‘sixd; wheremg is magni cation

[20]

(22]

(23]

N s
of the object in focus, ang is the distance between the current

point from the focus plane. More speci callyj)s = fxs f), [24]
andxg = jx §: The diameteb is nally converted to pixels: |25

bpx = di=ds b; whered; is the image diagonal in pixels.
[26]
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