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1. CrossLocate method details
We provide additional details about our CrossLocate lo-

calization method, especially our weak localization super-
vision used during the training process.

1.1. Weak localization supervision

In order to form a training triplet for each query pho-
tograph, examples of positive and negative database views
need to be collected. Similarly to NetVLAD [2], we make
use of the known geographic position and orientation of
each training image. However, only potentially positive
images and definitely negative images can be selected this
way, as there is no guarantee that two images really depict
the same scene, even though their geographic information
is similar. This is due to various obstacles in scenes, e.g.
overhanging cliffs, or just noisy GPS information.

We work in the WGS-84 coordinate system and perform
a three-step process to select the (potentially) positive and
(definitely) negative examples.

When working with the Sparse dataset, positive exam-
ples need to be within 20 meters from a query, while neg-
ative examples need to be farther than 2000 meters. For
the Uniform dataset, positive examples are closer than 1000
meters and negative examples are farther than 5000 meters.
Positive examples are also required to have their yaw an-
gle within a specific angle distance from the query yaw an-
gle, while the orientation of negative examples is not con-
strained in any way. This yaw angle distance is 15◦ for the
Sparse dataset and 30◦ for the Uniform dataset. The nega-
tive examples are sampled randomly from the databases and
filtered according to the described requirements.

As the second step, the positive and negative candidates
are sorted according to their visual similarity with the corre-
sponding query, i.e. based on descriptor distances, and only
the most similar candidates are kept. This way, we select
both well-matching positive examples and difficult negative
examples. This comes at the cost of regularly recomputing
query and database descriptors during the training.

Finally, only violating negatives are kept. The violat-
ing negatives are required to have their descriptor distances
to the corresponding query descriptor smaller than the dis-
tance (increased by a margin) between the query and its pos-
itive example.

We apply geometric augmentations to both query pho-
tographs and database synthetic views. Images are ran-
domly shifted, rotated and flipped. As the flip opera-
tion would disrupt the correspondences between query and
database images, it is always applied to all images in a
triplet. For additional augmentation of query photographs,
we modify brightness, hue, saturation and contrast, and also
add blur and noise.

Each resulting triplet is then composed of 1 query (an-
chor) photograph, 1 positive database view and 5 negative
database views. To better utilize the time spent by assem-
bling the triplets, we reuse each triplet three times, each
time with different augmentations. We also store all the
found violating negatives so that they can be used in sub-
sequent training epochs, if finding new violating negatives
becomes difficult.

1.2. Architecture

A more detailed description of our method’s architecture
is provided in the form of Table 1. The architecture consists
of 5 convolutional blocks. Each block contains 2-3 convo-
lutional layers (3× 3 kernel) with ReLU units and is ended
with a max-pooling layer. At the very end of the final con-
volutional block, we do not use any pooling or ReLU unit to
not restrict our representation. The final L2-normalizations
together with a global maximum pooling are crucial to pro-
duce our global “cross-modal” representation (descriptor)
for each image.

1.3. Technical details

We train for 100 epochs when using the Sparse dataset
and for 50 epochs when using the Uniform dataset. When
training on the Uniform dataset, the uniform compact ver-



Layer Dimensions
Input (500, 500, 3)
Conv 1 (with ReLU) (500, 500, 64)
Conv 2 (with ReLU) (500, 500, 64)
Max-pooling 1 (250, 250, 64)
Conv 3 (with ReLU) (250, 250, 128)
Conv 4 (with ReLU) (250, 250, 128)
Max-pooling 2 (125, 125, 128)
Conv 5 (with ReLU) (125, 125, 256)
Conv 6 (with ReLU) (125, 125, 256)
Conv 7 (with ReLU) (125, 125, 256)
Max-pooling 3 (63, 63, 256)
Conv 8 (with ReLU) (63, 63, 512)
Conv 9 (with ReLU) (63, 63, 512)
Conv 10 (with ReLU) (63, 63, 512)
Max-pooling 4 (32, 32, 512)
Conv 11 (with ReLU) (32, 32, 512)
Conv 12 (with ReLU) (32, 32, 512)
Conv 13 (32, 32, 512)
L2-norm (32, 32, 512)
Global max-pooling (512)
L2-norm (512)

Table 1. CrossLocate architecture together with activation dimen-
sions (height× width× channels).

sion of the training database is always used (161K images
instead of 7.8M). Evaluation (testing) is always done on the
fully-uniform “non-compact” databases (specifically their
testing sets). We use the Adam optimizer with a learning
rate of 0.00001. We form batches of 3 triplets and require
only 8 GB of GPU memory. The query and database de-
scriptors are recomputed every 250 triplets for the Sparse
dataset and every 1000 triplets for the Uniform dataset. For
triplet loss, we use a margin of 0.1.

Validation sets of the datasets are used to select the best
trained models – the models with the best combined lo-
calization performance at top-1, top-10 and top-100 can-
didates, and at a 1 kilometer location threshold.

For testing, we mainly evaluate recall@1 and re-
call@100 at numerous location thresholds/errors. For the
Sparse dataset, we measure the performance from 0 meter
tolerance to 5000 meters, every 20 meters. For the Uni-
form dataset, we measure the performance from 0 meters to
10000 meters, every 100 meters.

2. CrossLocate dataset details

We provide additional details regarding our datasets, as
well as the description of the process behind their creation.

2.1. Query photographs

We use two existing datasets of photographs captured in
nature – the GeoPose3K dataset [3] and the Landscape AR
dataset [4].

The original Landscape AR dataset consists of 16K pho-
tographs automatically collected from the Internet, with
their positions and orientations estimated using Structure-
from-Motion. As our goal is to reserve the area of Switzer-
land for the testing set, we leave out a cluster of images
around the Matterhorn mountain. This cluster would ex-
tend to both training and testing set areas. This way, we
ensure our sets are strongly separated. This results in 9K
photographs usable as queries for our purposes. By com-
bining these photographs with the GeoPose3K dataset, we
create a “CrossLocate” query dataset of 12K photographs
from across the Alps.

2.2. CrossLocate datasets

We provide the detailed numbers of images available in
our Sparse dataset (Table 2) and Uniform dataset (Table 3).

For testing purposes, we also combined our uniform
database (used mainly in the Uniform dataset) with other
datasets of query photographs – the CH1 dataset [7] of 203
photographs and the CH2 dataset [7] of 949 photographs.
For the CH1 dataset, we extracted the geographic informa-
tion of 196 photographs already included in the GeoPose3K
dataset [3], and we manually found the missing geographic
information (incl. orientation) for the remaining 7 pho-
tographs. In the CH2 dataset, only geographic positions are
available.

The set splits of all the datasets used in our work, as well
as the geographic information for all the images, are avail-
able on the project webpage (http://cphoto.fit.
vutbr.cz/crosslocate/) as part of our benchmark.

2.3. Image modalities

Both the sparse database and the uniform database are
composed of three different synthetic image modalities – se-
mantic segmentations, silhouette maps and depth maps. All
the image modalities are obtained by rendering a publicly
available geo-referenced DEM terrain model of the Alps
(http://www.viewfinderpanoramas.org) with a
resolution of approx. 30m/px.

To render the semantic segmentations, we overlay
the DEM model with the most frequent physical land
cover features from the OpenStreetMap (https://www.
openstreetmap.org): forests, glaciers, water bodies,
and bare rock. These features provide mainly areal infor-
mation, as the segment boundaries tend to be imprecise.

The silhouette maps were obtained by ray-casting the
DEM model – the silhouettes are generated at terrain dis-
continuities and provide more information compared to a
simple horizon line.

http://cphoto.fit.vutbr.cz/crosslocate/
http://cphoto.fit.vutbr.cz/crosslocate/
http://www.viewfinderpanoramas.org
https://www.openstreetmap.org
https://www.openstreetmap.org


Sparse dataset train val test total
sparse database 16 908 6 192 14 232 37 332
queries (GeoPose3K [3]) 1 409 516 1 186 3 111

Table 2. Numbers of query and database images in the Sparse dataset, and their split into training, validation and testing sets.

Uniform dataset train val test total
uniform database 7 849 968 889 212 1 979 160 10 718 340
uniform compact database 161 292 889 212 1 979 160 3 029 664
queries (“CrossLocate”) 8 324 516 3 513 12 353

Table 3. Numbers of query and database images in the Uniform dataset, and their split into training, validation and testing sets.
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Figure 1. Localization performance of database image modalities.
Results are measured on the combination of the CH1 dataset (used
as queries) and the testing part of the uniform database.

Similarly to the silhouette maps, the depth maps were
produced by ray-casting the DEM terrain model. This al-
lowed us to compute the absolute physical distance (in me-
ters) between the camera and the terrain at each pixel.

3. Experiments
To further support our results and claims, we extend the

evaluations presented in the main text with results measured
on additional testing sets.

3.1. Modalities evaluation

We provide an extended comparison of the localization
performance of the individual database image modalities.
The performance is measured on the combination of the
testing part of the uniform database with the query pho-
tographs of the CH1 dataset (Fig. 1) and the CH2 dataset
(Fig. 2).

The results again confirm the dominant position of depth
maps among other modalities. The possible benefit of
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Figure 2. Localization performance of database image modalities.
Results are measured on the combination of the CH2 dataset (used
as queries) and the testing part of the uniform database.

combining the base three modalities (seg-sil-dep) can
(only) be seen on the CH2 dataset. Horizon lines generally
lead to poor performance. However, the CH1 dataset is an
exception to this, as it is the only set where horizon lines
reach nearly the same performance as depth maps.

3.2. Comparison with the state-of-the-art methods

We provide an extended comparison of our CrossLocate
approach with the HLoc method [7], DELG method [5] and
HOW method [8]. The results are measured on the testing
set of the Sparse dataset (Fig. 3), as well as on the combi-
nation of the testing part of the uniform database with the
query photographs of the CH1 dataset (Fig. 4) and the CH2
dataset (Fig. 5).

For DELG, we provide results for the retrieval step
(DELG (global)), as well as the geometric verifica-
tion (DELG (local)). For HOW, we mainly provide re-
trieval results with global descriptors (HOW (global)).
A result for the ASMK aggregation used in HOW (HOW
(ASMK)) is available only on the Sparse dataset, because
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Figure 3. Localization performance of our approach and state-of-
the-art methods evaluated on the testing set of the Sparse dataset.
Solid lines: recall at 1 database candidates retrieved for each
query, dashed lines: recall at 100 candidates.
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Figure 4. Localization performance of our approach and state-of-
the-art methods evaluated on the combination of the CH1 dataset
(used as queries) and the testing part of the uniform database.
Solid lines: recall at 1 database candidates retrieved for each
query, dashed lines: recall at 100 candidates.

of the high memory requirements related to using the uni-
form database. For HLoc, we provide results for the re-
trieval step performed based on (query) horizon lines auto-
matically detected by the Edge-less method [1] (HLoc-E)
and Deeplab method [6] (HLoc-D). For HLoc evaluated on
the CH1 dataset, we also provide a result based on horizons
lines extracted semi-automatically with human guidance [7]
(HLoc-SA). This shows that our choice of the methods for
automatic horizon detection does not have a significant im-
pact on the performance of HLoc.

The results for recall@1 (solid lines) show that only
our CrossLocate approach reaches reasonable performance
(Our). Moreover, our recall@1 results significantly outper-
form the recall@100 (dashed lines) of the competing meth-
ods, up to at least 5 kilometer threshold.

For an easier comparison, only the correctness of po-
sition estimates is evaluated, without considering the cor-
rectness of orientation estimates (yaw angle). There-
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Figure 5. Localization performance of our approach and state-of-
the-art methods evaluated on the combination of the CH2 dataset
(used as queries) and the testing part of the uniform database.
Solid lines: recall at 1 database candidates retrieved for each
query, dashed lines: recall at 100 candidates.

fore, chances of making a successful localization randomly
(chance) are twelve times higher than when considering
the correctness of orientation (because of the 12 database
views at each position). This is arguably the reason why the
bad performing methods DELG, HOW and HLoc are able
to reach some level of performance at recall@100. How-
ever, chance plays no role in our CrossLocate approach, as
the results stay nearly the same when considering the cor-
rectness of the yaw angle (30◦ tolerance) (orient). An
orientation result for the CH2 dataset is not provided, be-
cause this dataset does not contain the orientation informa-
tion. The result for the combination of the database modal-
ities (seg-sil-dep) shows no clear benefit compared to
our choice of depths maps as the main database modality.
Discarding the field of view information used for the scaling
of query images during evaluation leads to a small decrease
in performance (eval-no-FOV). The importance of our
cross-modal training is emphasized by the result obtained
when our model is only initialized based on the ImageNet
dataset, but not trained further (ImageNet).

Specific recall values measured on the testing set of the
Uniform dataset can be seen in Table 4 (corresponding chart
is available in the main text).

4. Qualitative evaluation
We provide a qualitative evaluation of our CrossLocate

approach in the form of successful and unsuccessful local-
izations (Figures 6 and 7 respectively). The localization
examples are taken from the evaluation conducted on the
testing set of the Uniform dataset (3.5K query photographs
and 2M database images). For each query photograph, we
show the top 3 retrieved candidates, together with their dis-
tances from the query ground-truth (location distance and
yaw angle distance). For the purpose of this evaluation, a
localization is considered successful if the top 1 candidate



CrossLocate recall@1 recall@100
Uniform dataset 1 km 5 km 10 km 1 km 5 km 10 km

position 38.66 50.10 51.75 72.62 85.08 93.17
position & orientation 38.49 49.33 49.79 71.90 79.68 83.60
no FOV evaluation 31.45 45.60 47.77 65.61 81.55 91.35

Table 4. Results of our CrossLocate approach measured on the testing set of the challenging Uniform dataset. We provide recall values
obtained when only the correctness of location estimates is considered (position); when also the correctness of orientation estimates is
considered (position & orientation); and when field of view information is not utilized during the evaluation process (no FOV
evaluation, only position is considered).

is strictly within 1 kilometer and 30◦ (yaw angle) from the
query ground-truth (shown with a light green border). Lo-
calizations within 10 kilometers and 30◦ are emphasized by
a dark green color. The database candidates are accompa-
nied by scales showing depth in kilometers.

As seen in Fig. 6, our approach can deal with various
obstacles and challenging weather. Specifically, our ap-
proach can successfully localize images even when hori-
zon is hardly visible, typically because of clouds and fog.
Also, examples where the scene is significantly occluded
are shown. Finally, our approach works well even in diffi-
cult lighting conditions, such as in the dark.

The unsuccessful localizations show many of the diffi-
culties related to the localization in natural environments
(Fig. 7). Examples with nearly no distinctive informa-
tion usable for localization are shown, as well as severely
occluded scenes. Furthermore, the high self-similarity of
distinct places leading to incorrect localizations can be ob-
served.

It can be seen that the appearance of distant scenery is
nearly unchanged when the camera moves few kilometers
back and forth. This means that localization meeting the
strict tolerance of 1 kilometer is difficult to achieve in natu-
ral environments, leaving room for further research.
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Figure 6. Qualitative evaluation of our CrossLocate approach. A total of 14 successful localizations (for 14 query photographs) is shown.
Each query is accompanied by its 3 nearest database candidates (depth maps). Candidates within 1 kilometer and 30◦ in yaw angle are
highlighted by a light green border. Candidates within 10 kilometers and 30◦ in yaw angle are emphasized by a dark green color.
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Figure 7. Qualitative evaluation of our CrossLocate approach. A total of 14 unsuccessful localizations (for 14 query photographs) is
shown. Each query is accompanied by its 3 nearest database candidates (depth maps). Candidates within 1 kilometer and 30◦ in yaw angle
are highlighted by a light green border. Candidates within 10 kilometers and 30◦ in yaw angle are emphasized by a dark green color.


