
LandscapeAR: Large Scale Outdoor Augmented Reality
by Matching Photographs with Terrain Models Using

Learned Descriptors – Supplementary material

Jan Brejcha1,2[0000−0002−2091−6185], Michal Lukáč2[0000−0002−9664−7786],
Yannick Hold-Geoffroy2[0000−0002−1060−6941], Oliver Wang2[0000−0003−2839−7153], and

Martin Čadík1[0000−0001−7058−9912]
1 Brno University of Technology, Faculty of Information Technology, CPhoto@FIT,

Božetěchova 2, 61200 Brno, Czech Republic, http://cphoto.fit.vutbr.cz
2 Adobe Inc., 345 Park Ave, San Jose, CA 95110-2704, USA

Fig. 1. Illustration of successful results obtained by pose estimation using our cross-domain match-
ing method. Left: terrain rendered with the estimated camera postion and rotation, right: the ren-
dered image overlaid by the photograph. First line: Yosemite Valley (image credit Kirk Northrop,
https://flic.kr/p/22MAjoC), second line: Nepal – view from Gorakshep.

1 Training parameters

For training, we use a curriculum learning strategy, as described in the Sec. 3.4 of the
main paper. To allow the gradual increase of the difficulty in the hard negative mining



2 J. Brejcha et al.

throughout the minibatch, we introduced the tunable parameter � in Eq. (3). We start
training with the � = 0 and increase � by 0.05 with each 10 k steps up to a maximum
hardness. Once maximum hardness is reached, we keep it constant until the end of the
training. We experimentally found that a maximum of � = 0.23 worked well for our
data, with the margin set to � = 0.2, and minimum distance in 3D was set to m = 50m.
We used minibatch size of 300 patches, learning rate 10−5, and ADAM optimizer. To
prevent overfitting we used early stopping using validation set; the network was trained
for 21 epochs using 1.2M training steps.

2 Rendering Digital Elevation Models and Satellite Imagery

For rendering digital elevation models with satellite imagery overlay we use publicly
available OSGEarth3 library. In the region of European Alps we use DEM at 1 arcsecond
resolution, in the region of South America andAsia we use DEMat 3 arcsecond resolution,
both publicly available at http://viewfinderpanoramas.org/. In the region of USA we use
DEM at 1 arcsecond resolution publicly available from USGS4. We use satellite imagery
provided by European Space Agency (ESA), at resolution of 1-2m in the Europe, USA
and Asia, and at 5m resolution in the region of Southern America.

3 Qualitative evaluation

We illustrate several qualitative results of our method in Fig. 1. In the top row, we see
that our keypoint-based approach, unlike the horizon line based methods [3, 2], is able
to precisely estimate camera pose even for images where no horizon line is visible.
Additionally, our approach is expected to work well if around 100 of inliers distributed
all over the photograph are available.

We found that our approach is most likely to fail on images fully covered by snow
(see the top row of Fig. 2), containing a lot of high-frequency noise in the foreground
(usually caused by foliage or trees), or when the photograph contains mostly flat terrain
(see the bottom row of Fig. 2), where the amount of overlapping keypoints with the
rendered image is low.

4 Comparison with State-of-the-Art

In addition to the comparison with state-of-the-art methods based on positional error
presented in the main paper in Sec. 4.3, we also add a comparison with respect to the
number of inliers given its month in the year, shown in Fig. 3. We may observe that
more photographs across all datasets is usually captured during the summer and early
autumn months (June – October), see dashed blue line. This correlates with the counts of
inliers of all methods in the comparison – higher amounts of inliers are more likely in the
summer photographs. On GeoPose3K and Nepal, our method trained with auxiliary loss
3 http://osgearth.org
4 https://www.usgs.gov



LandscapeAR: Large Scale Outdoor Augmented Reality 3

Fig. 2. Illustration of inaccurate results. Left: terrain rendered with the estimated camera postion
and rotation, right: the rendered image overlaid by the photograph. First line: Mount Everest
and Nuptse, second line: view from Alexandrovka – an observation tower near Adamov, Czech
Republic.

functions (see red line) typically produces more inliers than D2Net and HardNet++. On
Andes Huascaran and Yosemite, D2Net and HardNet++ are generally able to find more
inliers than our method. This illustrates that images from the Nepal dataset are likely to
have features similar to the training set, the Alps, which is less the case for Yosemite and
Andes Huascaran. Moreover, Andes Huascaran is rendered using a different ortho-photo
texture (RapidEye satellite) and was created using D2Net matches, giving an advantage
to this method.

Mean and median counts of inliers for each method and dataset are illustrated in
Tab. 1. Similarly to per-month number of inliers, we see that our method retrieves the
most inliers on GeoPose3K and Nepal datasets, while D2Net and HardNet++ are able to
retrieve more inliers on Andes Huascaran and Yosemite, respectively. However, it seems
that the inlier increase of HardNet++ on Yosemite dataset is caused by few images with
a large number of inliers, since the mean of HardNet++ is the largest, but the median is
not—in fact, our method was able to get the largest median in number of inliers on this
dataset.

5 Auxiliary loss functions in single-domain scenario

According to our experiment, auxiliary loss function defined in Eq. (4) brings further
improvement over the basic variant of the cross-domain triplet loss defined in Eq. (1). To
illustrate this, we evaluated each branch of our network on the single domain HPatches
dataset [1] and compared with HardNet++ and D2Net in Tab. 2 on three tasks – patch



4 J. Brejcha et al.

0 1 2 3 4 5 6 7 8 9 101112
month

0

100

200

300
in

lie
rs

GeoPose3K

num photos

D2Net

NCNet

HardNet++

VGG-16-D2-FT

Ours

Ours-aux

0 1 2 3 4 5 6 7 8 9 101112
month

0

100

200

300

in
lie

rs

Nepal

num photos

D2Net

NCNet

HardNet++

VGG-16-D2-FT

Ours

Ours-aux

0 1 2 3 4 5 6 7 8 9 101112
month

0

100

200

in
lie

rs

Andes Huascaran

num photos

D2Net

NCNet

HardNet++

VGG-16-D2-FT

Ours

Ours-aux

0 1 2 3 4 5 6 7 8 9 101112
month

0

200

400

in
lie

rs

Yosemite

num photos

D2Net

NCNet

HardNet++

VGG-16-D2-FT

Ours

Ours-aux

Fig. 3. Comparison of our method with state-of-the-art with respect to number of inliers given the
month in four different locations across the Earth. Higher is better.

verification, matching and instance retrieval. The symbols ∗ and ⬥ denote DiffSeq
(negative pairs are formed by patches from different sequences) and SameSeq (negative
pairs are formed by patches from the same sequence) respectively—for its exact definition,
please see the HPatches paper [1]. Please note that the HPatches benchmark is a single
domain dataset containing only photographs, which is not compatible with the design
of our architecture; moreover, our architecture was trained for much more specific task
than the competitors. Therefore, we needed to evaluate our network twice—once for
each branch. Clearly HardNet++ exhibits superior performance over other methods on
HPatches (see the first line in bold in Tab. 2), while on our cross-domain scenario it
exhibits worse performance compared to our method (see Fig. 8 in the main paper). This
illustrates that our cross-domain scenario is different from the single-domain one. On
HPatches, the variant of our network trained with auxiliary loss function outperforms
the variant trained with basic triplet loss, which is consistent with the comparison on our
cross domain datasets. Interestingly, the best performing variant of our method is the
render branch trained with auxiliary loss functions (see the last line of Tab. 2 in bold).
This is most probably caused by the fact that in our train dataset the rendered images are
always aligned perfectly, unlike the photographs, which eventually can contain outliers.



LandscapeAR: Large Scale Outdoor Augmented Reality 5

GeoPose3K Nepal Andes Huascaran Yosemite
Mean Median Mean Median Mean Median Mean Median

D2Net 175.72 69.50 55.41 33.00 134.01 101.00 142.84 21.00
NCNet 110.81 94.50 124.71 103.00 113.17 94.00 103.13 83.00

HardNet++ 64.27 0.00 29.97 16.50 107.56 54.00 207.66 18.00
VGG-16-D2-FT 144.73 69.50 51.95 22.00 71.89 63.50 91.66 19.00

Ours 166.53 83.00 84.52 49.50 63.33 48.00 121.34 22.50
Ours-aux 178.85 86.50 80.14 43.50 86.79 80.00 137.70 24.00

Table 1. Comparison of our method with state-of-the-art with respect to number of inliers in
four different locations across the Earth. The larger the better, best performing algorithms are in
bold. Although NCNet is able to get many inliers compared to other algorithms, we measured
low amount of correctly localized images (see Fig. 8, NCNet in the main paper), and therefore we
removed it from this comparison.

Method Verification Matching Retrieval 20k
∗ ⬥ ∗ ⬥ ∗ ⬥
Easy Hard Tough Easy Hard Tough Easy Hard Tough

HardNet++ 0.986 0.979 0.974 0.962 0.939 0.919 0.730 0.582 0.401 0.792 0.677 0.492
D2Net 0.810 0.788 0.721 0.700 0.666 0.646 0.387 0.172 0.075 0.545 0.312 0.179

VGG-16-D2-FT 0.866 0.834 0.770 0.734 0.706 0.671 0.168 0.459 0.017 0.292 0.122 0.062
Ours-photo 0.906 0.877 0.812 0.776 0.738 0.701 0.278 0.094 0.037 0.421 0.193 0.101
Ours-render 0.899 0.868 0.811 0.774 0.740 0.703 0.222 0.070 0.026 0.375 0.173 0.089

Ours-aux-photo 0.925 0.902 0.828 0.796 0.747 0.713 0.382 0.152 0.065 0.508 0.255 0.135
Ours-aux-render 0.956 0.942 0.915 0.892 0.857 0.830 0.453 0.231 0.112 0.556 0.326 0.181

Table 2. Comparison of variants of our network to HardNet++ and D2Net on the full HPatches
dataset [1] (single domain). For D2Net, we used the dense feature extractor which results in 15x15
descriptors per 65px2 patch, from which only the central descriptor was used. Higher is better in
all tasks. HardNet++ perform the best, from our methods the render branch trained with auxiliary
loss gives second best result (see bottom line in bold). ∗ DiffSeq; ⬥ SameSeq [1].

6 Algorithm runtimes

We implemented the pose estimation algorithm presented in Sec. 3.5 in Python for
PC and a simplified version (see Sec. 5 of the main paper) for the iPhone in C++. The
complete pose estimation algorithm takes around 40 seconds on PC; the simplified version
runs about 1 minute on the iPhone XS. Description of 5 k patches takes approximately
0.1 seconds on PC with NVIDIA GeForce GTX 1080 and around 7 seconds on the
iPhone XS.



6 J. Brejcha et al.

References

1. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: HPatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In: Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017 (2017). https://doi.org/10.1109/CVPR.2017.410

2. Brejcha, J., Čadík, M.: Camera orientation estimation in natural scenes using semantic
cues. In: 2018 International Conference on 3D Vision (3DV). pp. 208–217 (Sep 2018).
https://doi.org/10.1109/3DV.2018.00033

3. Saurer, O., Baatz, G., Köser, K., Ladický, L., Pollefeys, M.: Image Based Geo-localization in the
Alps. International Journal of Computer Vision pp. 1–13 (2015). https://doi.org/10.1007/s11263-
015-0830-0, http://dx.doi.org/10.1007/s11263-015-0830-0


